

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

GEOTECHNICAL & PEAT STABILITY REPORT

SHESKIN SOUTH WIND FARM

Prepared for: MKO Ltd



Date: January 2023

Unit 6, Bagenalstown Industrial Park, Bagenalstown, Co. Carlow, R21 XW81, Ireland
T: +353 59 9723800 E: info@ftco.ie

CORK | DUBLIN | CARLOW

www.fehilytimoney.ie

GEOTECHNICAL & PEAT STABILITY ASSESSMENT REPORT SHESKIN SOUTH WIND FARM

User is responsible for Checking the Revision Status of this Document

Rev. No.	Description of Changes	Prepared by:	Checked by:	Approved by:	Date:
0	Draft for Comment	AW/IH	IH	BDH	08.07.22
1	For Approval	AW/IH	IH	BDH	03.11.22
2	Including settlement pond assessment	AW/IH	IH	BDH	16.01.23

Client: MKO Ltd

Keywords: Geotechnical, Peat Stability, Peat Failure, Risk Assessment

Abstract: Fehily Timoney and Company (FT) were engaged by McCarthy Keville O'Sullivan to undertake a

geotechnical assessment of the proposed Sheskin South wind farm site with respect to peat stability. As part of the geotechnical assessment of the proposed development, FT completed walkover surveys at the site. The findings of the geotechnical and peat stability assessment showed that the site has an acceptable margin of safety and is suitable for the proposed wind

farm development.

P20-312 www.fehilytimoney.ie —

TABLE OF CONTENTS

1.	NON-TECHNCIAL SUMMARY
2.	INTRODUCTION
2.1	Fehily Timoney and Company1
2.2	Project Description1
2.3	Peat Stability Assessment Methodology1
2.4	Peat Failure Definition4
2.5	Main Approaches to Assessing Peat Stability4
2.6	Peat Stability Assessment – Deterministic Approach4
2.7	Applicability of the Factor of Safety (Deterministic) Approach for Peat Slopes5
2.8	Assessment of Intense Rainfall and Extreme Dry Events on the Peat Slope6
3.	DESK STUDY
3.1	Desk Study7
3.2	Soils, Subsoil & Bedrock7
3.3	Previous Failures8
4.	FINDINGS OF SITE RECONNAISSANCE
4.1	Site Reconnaissance9
4.2	Findings of Site Reconnaissance9
5.	GROUND INVESTIGATION
5.1	Summary of Ground Conditions
5.2	Summary of Laboratory Tests
5.3	Summary of Geotechnical Parameters
	PEAT DEPTHS, STRENGTH & SLOPE AT PROPOSED INFRASTRUCTURE LOCATIONS
ь.	PEAT DEPTHS, STRENGTH & SLOPE AT PROPOSED INFRASTRUCTURE LOCATIONS
6.1	Peat Depth
6.2	Peat Strength
6.3	Slope Angle16
6.4	Summary of Findings16
7.	PEAT STABILITY ASSESSMENTS
7.1	Methodology for Peat Stability Assessment20

7.2	Analysis to Determine Factor of Safety (Deterministic Approach)
7.3	Results of Analysis24
	7.3.1 Undrained Analysis for the Peat24
	7.3.2 Drained Analysis for the Peat29
7.4	Stability of Borrow Pit Berm
8. PEAT	Γ STABILITY RISK ASSESSMENT
8.1	Summary of Risk Assessment Results
9. INDI	CTATIVE FOUNDATION TYPE AND FOUNDATION DEPTH FOR TURBINES
9.1	Summary
10.	FOUNDING DETAILS FOR INFRASTRUCTURE ELEMENTS (EXCEPT TURBINES)
10.1	Access Roads
10.2	Crane Hardstands
10.3	Substation Foundations & Platforms39
10.4	Construction Compound Platforms40
10.5	Met Mast Foundations40
10.6	Peat Placement Areas
11.	SUMMARY AND RECOMMENDATIONS
11.1	Summary
11.2	Recommendations42
12.	REFERENCES

LIST OF APPENDICES

Appendix A:	Photos from Site Walkover	
Appendix B:	Peat Stability Risk Register	
Appendix C:	Calculated FoS for Peat Slopes on Site	
Appendix D:	Methodology for Peat Stability Risk Assessment	
Appendix F:	Ground Investigation (November 2021) - Trial Pit Logs, Photographs and Laboratory	/ Test Results
пренил п	Ground investigation (November 2021) Than it 2083, Thotographs and 2000 action	reservesares
LIST OF FI	GURES	
Figure 2.1:	Methodology for Peat Stability Assessment	3
Figure 2.2:	Peat Slope Showing Balance of Forces to Maintain Stability	
Figure 4.1:	Peat Depth Contour Plan	11
Figure 4.2:	Construction Buffer Zone Plan	
Figure 5.1:	Ground Investigation Location Plan	15
Figure 6.1:	Undrained Shear Strength (c _u) Profile for Peat with Depth	
Figure 7.1:	Factor of Safety Plan – Short Term Critical Condition (Undrained)	28
LIST OF TA	ABLES	
Table 5-1:	Summary of Geotechnical Parameters	
Table 6.1:	Peat Depth & Slope Angle at Proposed Infrastructure Locations	
Table 8.1:	List of Effective Cohesion and Friction Angle Values for Peat	
Table 7.2:	Factor of Safety Limits for Slopes	
Table 7.3:	Factor of Safety Results (Undrained Condition)	
Table 7.4:	Factor of Safety Results along Access Roads (Undrained Condition)	
Table 7.5:	Factor of Safety Results Peat Placement Areas (Undrained Condition)	
Table 7.6:	Factor of Safety Results Settlement Ponds (Undrained Condition)	
Table 7.7:	Factor of Safety Results (Drained Conditions)	
Table 7.8:	Factor of Safety Results along access roads (Drained Condition)	
Table 7.9:	Factor of Safety Results Peat Placement Areas (Drained Condition)	
Table 7.10:	Factor of Safety Results Settlement Ponds (Drained Condition)	
Table 7.9:	Material Properties	
Table 7.10: Table 8.1:	Borrow Pit Stability Analysis	
Table 8.1:	Risk Rating LegendSummary of Peat Stability Risk Register	
Table 8.2.	Summary of Indicative Turbine Foundation Type and Founding Depths	
TUDIC J-I.	Summary of malcative rarbine roundation type and rounding Depths	

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

1. NON-TECHNCIAL SUMMARY

Fehily Timoney and Company (FT) was engaged by MKO (on behalf of Sheskin South Renewables Power DAC) to undertake a geotechnical and peat stability assessment of the proposed Sheskin South wind farm site the 'Proposed Development'), located in north Co. Mayo. In accordance with planning guidelines compiled by the Department of the Environment, Heritage and Local Government (Draft Revised Wind Energy Development Guidelines, DoHPLG, 2019), where peat >0.5m thickness is present on a proposed wind farm development, a peat stability assessment is required.

A walkover including intrusive peat depth probing, trial pits, desk study, stability analysis and risk assessment was carried out to assess the susceptibility of the site to peat failure following the principles in Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (PLHRAG, Scottish Government, 2017).

The findings, which involved a stability analysis of approximately 310 locations, show that the site has an acceptable margin of safety, a low risk of peat failure and is suitable for the proposed wind farm project. The findings include recommendations and control measures for construction work in peat lands to ensure that all works adhere to an acceptable standard of safety.

The proposed wind farm comprises 21 no. wind turbines and associated infrastructure. A detailed description of the Proposed Development is included in Chapter 4 of the EIAR.

The site slopes steadily from the northwest to the southeast, ranging in elevation from 290 to 105mOD, with drainage channels running typically northwest to southeast. The land use within the Proposed Development site comprises commercial forestry.

Slope inclinations at the main infrastructure locations range from 2 to 8 degrees. The relatively uniform topography on site reflects the low risk of peat failure that has been determined following this peat stability assessment. Ground conditions comprised mainly of blanket peat overlying clay and gravel overlying bedrock.

Between March 2021 and May 2022, 960 no. peat depth readings were taken within the proposed development site. Peat depth recorded during the site walkovers and from the ground investigation ranged from 0.2 to 5.7m with an average peat depth of 2.1m. 53% of the probes recorded peat depths of less than 2.0m with 83% of peat depth probes recorded peat depths of less than 3.0m. A number of localised readings recorded peat depths from 3.0 to 5.7m. The average peat depth at any of the proposed turbine locations is 3.0m.

The purpose of the stability analysis was to determine the stability i.e. Factor of Safety (FoS), of the peat slopes. The FoS provides a direct measure of the degree of stability of a peat slope. A FoS of less than 1.0 indicates that a slope is unstable; a FoS of greater than 1.0 indicates a stable slope. An acceptable FoS for slopes is generally taken as a minimum of 1.3. The stability analysis for the Proposed Development, which analysed the turbine locations, access roads and related infrastructure, resulted in FoS above the minimum acceptable value of 1.3 and hence the site has a satisfactory margin of safety.

The risk assessment uses the results of the stability analysis in combination with qualitative factors, which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability, to assess the risk of peat failure at the site. The results of the risk assessment are given in Appendix B. A construction buffer zone plan based on qualitative factors identified during the site walkover is included as Figure 4.2.

P20-312 www.fehilytimoney.ie — Page 1 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

In summary, the Sheskin South wind farm site has an acceptable margin of safety, and therefore is considered to be at **low** risk of peat failure and is suitable for wind farm development.

P20-312 www.fehilytimoney.ie — Page 2 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

2. INTRODUCTION

2.1 Fehily Timoney and Company

Fehily Timoney and Company (FT) is an Irish engineering, environmental science and planning consultancy with offices in Cork, Dublin and Carlow. The practice was established in 1990 and currently has about 90 members of staff, including engineers, scientists, planners and technical support staff. FT deliver projects in Ireland and internationally in our core competency areas of Waste Management, Environment and Energy, Civils Infrastructure, Planning and GIS and Data Management.

FT have been involved in over 100 wind farm developments in both Ireland and the UK at various stages of development i.e., preliminary feasibility, planning, design, construction, and operational stage and have established themselves as one of the leading engineering consultancies in peat stability assessment, geohazard mapping in peat land areas, investigation of peat failures and site assessment of peat.

This Report was written by Ian Higgins (FT Principal Geotechnical Engineer, MSc in Geotechnical Engineering) and Alan Whelan (FT Project Engineer). Ian is a Principal Geotechnical Engineer with Fehily Timoney and has over 20 years' experience in geotechnical engineering. Alan is a Project Engineer with Fehily Timoney and has two years' experience in geotechnical engineering.

2.2 Project Description

FT was engaged in February 2021 by McCarthy Keville O'Sullivan (MKO) (on behalf of Sheskin South Renewables Power DAC) to undertake a geotechnical and peat stability assessment of the proposed Sheskin South Wind Farm.

The Proposed Development is located approximately 5km northwest of Bellacorrick, Co. Mayo

The Proposed Development site comprises predominantly commercial forestry underlain by blanket peat. The surrounding landscape to the east and north is predominately flat with land-use comprising forestry and blanket peatland.

The Proposed Development will comprise 21 no. wind turbines and associated hardstanding areas, 1 no. electricity substation, 2 no. borrow pits, 12 no. peat placement areas, 4 no. temporary construction compounds, upgrade of existing roads, construction of new site access roads, underground cabling connecting to the existing Bellacorrick substation, road widening and accommodation works along the turbine delivery route, 1 no. permanent meteorological mast, site drainage and all associated work as described in Chapter 4 of the EIAR.

2.3 Peat Stability Assessment Methodology

FT undertook the assessment following the principles in Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments (2nd edition, PLHRAG, 2017). The Peat Landslide Hazard and Risk Assessment Guide (PLHRAG) is used in this report as it provides best practice methods to identify, mitigate and manage peat slide hazards and associated risks in respect of consent applications for electricity generation projects.

P20-312 ______ www.fehilytimoney.ie _____ Page 1 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

The aforementioned best practice guide was produced following peat failures in the Shetland Islands, Scotland in September 2003 but more pertinently following the peat failure in October 2003, during the construction of a wind farm at Derrybrien, County Galway, Ireland.

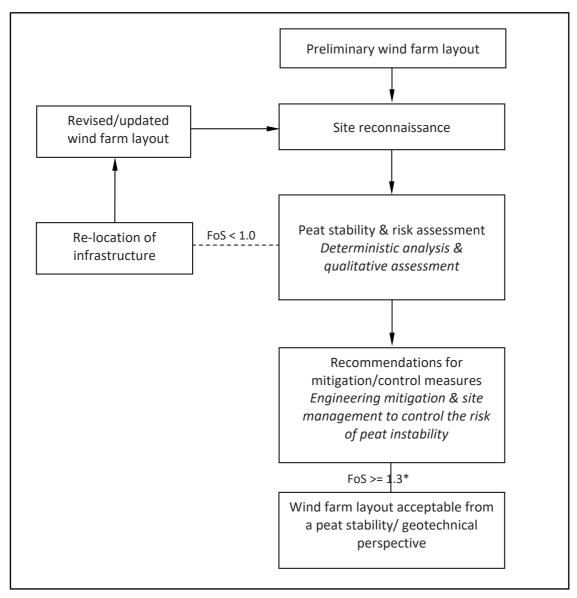
This peat stability assessment has been undertaken taking into account peat failures that have occurred on peatland sites (such as recent failures at Shass Mountain (2020), Co. Leitrim and Meenbog (2020), Co. Donegal). The lessons learned from both peat slide events have been incorporated into the design of this project and the construction methodologies to be implemented. The Meenbog failure occurred during the construction of a section of floating road on a wind farm on sidelong ground in an area of weak peat. This construction technique is not proposed on the Sheskin South site. It is important that the existing site drainage is maintained during construction to avoid a similar failure to that on Shass Mountain, which occurred following heavy rainfall, and this is referenced in the Risk Assessments for the turbines/access roads.

A constraints study was initially undertaken by the Environmental, Hydrogeological and Ecological members of the design team to determine the developable area on the site, prior to the site reconnaissance by engineering geologists/geotechnical engineers from FT. The extent and depth of ground investigation and peat stability analysis by FT have been undertaken in accordance with guidance within Eurocode 7 and PLHRAG (2nd Edition, 2017) to investigate peat slopes that have the potential to impact on the proposed development, as applicable. Sufficient peat depth data has been recorded during the site walkovers to enable the characterisation of the peat depth across the proposed development site as shown in Figure 4.1 of the EIAR, with additional detail at infrastructure locations. The peat stability assessment is undertaken to identify peat slopes at risk from the proposed development, and to identify peat slopes that may pose a risk to the proposed development.

The geotechnical and peat stability assessment at the site included the following activities:

- (1) Desk study, involving the review of publicly available soils and geology maps, records of historical peat failures, aerial photography.
- (2) Site reconnaissance including shear strength and peat depth measurements undertaken following initial multidisciplinary constraints study (by the design team) to determine the proposed construction areas within the site i.e. the area within the overall site where development is possible following multidisciplinary review and assessment of constraints (refer to Chapter 3 of the EIAR).
- (3) Peat stability assessment of the peat slopes on site using a deterministic and qualitative approach.
- (4) Peat contour depth plan compiled based on the peat depth probes carried out across the site by FT (2021) and MKO (2021 and 2022).
- (5) Factor of safety plan compiled for the short-term critical condition (undrained) for approximately 290 no. FoS points analysed along the proposed infrastructure envelope on site.
- (6) Construction buffer zone plan identifies areas with an elevated or higher construction risk where mitigation/control measures will need to be implemented during construction to minimise the potential risks, as well as areas where construction works should be avoided.
- (7) A peat stability risk register was compiled to assess the potential design/construction risks at the infrastructure locations and determine adequate mitigation/control measures for each location to minimise the potential risks and ensure they are kept within an acceptable range, where necessary.
- (8) Review of ground investigation carried out at the site by Irish Drilling Ltd. (IDL).
- (9) Commentary of founding details for other infrastructure elements such as access roads, crane hardstands, substation & construction compound platforms and met mast foundation.

P20-312 — www.fehilytimoney.ie — Page 2 of 44


PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

A flow diagram showing the general methodology for the peat stability assessment is shown in Figure 2.1. The methodology illustrates the optimisation of the wind farm layout based on the findings from the site reconnaissance and stability analysis and subsequent feedback.

Figure 2.1: Methodology for Peat Stability Assessment

^{*}An FoS of between 1.0 and 1.3 does not mean that a failure will occur, but that the area requires attention. Mitigation measures can be provided for areas with an FoS of between 1.0 and 1.3 to reduce the risk of failure.

As for all construction projects, a detailed engineering construction design must be carried out by the appointed construction stage designer prior to any construction work commencing on site. This must take account of the consented project details and any conditions imposed by that consent. This must include a confirmatory peat stability assessment to account for any changes in the environment which may have occurred in the time leading up to the commencement of construction.

P20-312 www.fehilytimoney.ie — Page 3 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

2.4 Peat Failure Definition

Peat failure in this report refers to a significant mass movement of a body of peat that would have an adverse impact on the proposed wind farm development and the surrounding environment. Peat failure excludes localised movement of peat that would occur below an access road, creep movement or erosion type events.

The potential for peat failure at this site is examined with respect to wind farm construction and associated activity.

2.5 Main Approaches to Assessing Peat Stability

The main approaches for assessing peat stability for wind farm developments include the following:

- (1) Geomorphological
- (2) Qualitative (judgement)
- (3) Index/Probabilistic (probability)
- (4) Deterministic (factor of safety)

Approaches (1) to (3) listed above are considered subjective and do not provide a definitive indication of stability; in addition, a high level of judgement/experience is required which makes it difficult to relate the findings to real conditions. FT apply a more objective approach, the deterministic approach (as discussed in Section 2.6).

As part of FT's deterministic approach, a qualitative risk assessment is also carried out taking into account qualitative factors, which cannot necessarily be quantified, such as the presence of mechanically cut peat, quaking peat, bog pools, sub peat water flow, slope characteristics and numerous other factors. The qualitative factors used in the risk assessment are compiled based on FT's experience of assessments and construction in peat land sites and peat failures throughout Ireland and the UK. FT have been involved with in excess of 100 wind farm developments across Ireland and the UK at various stages of development, from preliminary feasibility stage through planning and from scheme development at tender design and detailed design stage, through to the construction and operational stages. This approach follows the guidelines for geotechnical risk management as given in Clayton (2001), as referenced in the best practice for Peat Landslide Hazard and Risk Assessment Guide (PLHRAG, 2017), and takes into account the approach of MacCulloch (2005).

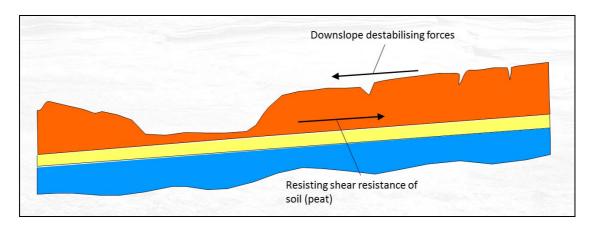
The risk assessment uses the results of the deterministic approach in combination with qualitative factors, which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability to assess the risk of instability on a peat land site.

2.6 Peat Stability Assessment – Deterministic Approach

The peat stability assessment is carried out across a wide area of peatland to determine the stability of peat slopes and to identify areas of peatland that are suitable for development; this allows the layout of infrastructure on a particular wind farm site to be optimised. The assessment provides a numerical value (factor of safety) of the stability of individual parcels of peatland. The findings of the assessment discriminate between areas of stable and unstable peat, and areas of marginal stability where restrictions may apply. This allows for the identification of the most suitable locations for turbines, access roads and infrastructure.

P20-312 www.fehilytimoney.ie Page 4 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM


REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

A deterministic assessment requires geotechnical information and site characteristics which are obtained from desk study and site walkover, e.g. properties of peat/soil/rock, slope geometry, depth of peat, underlying strata, groundwater, etc. An adverse combination of the factors listed above could potentially result in instability. Using the information above, a factor of safety is calculated for the stability of individual parcels of peatland on a site (as discussed in Section 7).

The factor of safety is a measure of the stability of a particular slope. For any slope, the degree of stability depends on the balance of forces between the weight of the soil/peat working downslope (destabilising force) and the inherent strength of the peat/soil (shear resistance) to resist the downslope weight, see Figure 2.2.

Figure 2.2: Peat Slope Showing Balance of Forces to Maintain Stability

The factor of safety provides a direct measure of the degree of stability of a slope and is the ratio of the shear resistance over the downslope destabilising force. Provided the available shear resistance is greater than the downslope destabilising force then the factor of safety will be greater than 1.0 and the slope will remain stable. If the factor of safety is less than 1.0 the slope is unstable and liable to fail. The acceptable range for factor of safety is typically from 1.3 to 1.4.

2.7 Applicability of the Factor of Safety (Deterministic) Approach for Peat Slopes

The factor of safety approach is a standard engineering approach in assessing slopes which is applied to many engineering materials, such as peat, soil, rock, etc.

The factor of safety approach is included in the Peat Landslide Hazard and Risk Assessments Best Practice Guide for Proposed Electricity Generation Developments (PLHRAG, 2017); see Section 5.3.1 of the guide. This guide provides best practice methods to identify, mitigate and manage peat slide hazards and associated risks in respect of consent applications for electricity generation projects.

Furthermore, the best practice guide notes that the results from the factor of safety approach 'has provided the most informative results' with respect to analysing peat stability (Section 5.3.1 of the guide).

The factor of safety approach in this report includes undrained (short-term stability) and drained (long-term stability) analyses. The undrained condition is the critical condition for the development. The purpose of the drained analysis is to identify the relative susceptibility of rainfall-induced failures at the site.

P20-312 www.fehilytimoney.ie Page 5 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Notwithstanding the above, the stability analysis used by FT in this report also includes qualitative factors to determine the potential for peat stability i.e. the analysis used does not solely rely on the factor of safety approach.

The deterministic analysis is considered an acceptable engineering design approach. This concurs with the best practice guide referenced above.

2.8 Assessment of Intense Rainfall and Extreme Dry Events on the Peat Slope

The deterministic approach carried out by FT examines intense rainfall and extreme dry events. The deterministic approach includes and undrained (short-term stability) and drained (long-term stability) analysis to assess the factor of safety for the peat slopes against a peat failure.

The drained loading condition applies in the long-term. This condition examines the effect of the change in groundwater level as a result of rainfall on the existing stability of the natural peat slopes. For the drained analysis the level of the water table above the failure surface is required to calculate the factor of safety for the peat slope.

In order to represent varying water levels within the peat slopes, a sensitivity analysis is carried out which assesses varying water level in the peat slopes i.e. water levels ranging from 0 to 100% of the peat depth is conducted, where 0% equates to the peat been completely dry and 100% equates to the peat being fully saturated.

By carrying out such a sensitivity analysis with varying water level in the peat slopes, the effects of intense rainfall and extreme dry events are considered and analysed. The results of which are presented in Section 7 of this report.

P20-312 www.fehilytimoney.ie Page 6 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

3. DESK STUDY

3.1 Desk Study

The main relevant sources of interest with respect to the site include:

- Geological plans and Geological Survey of Ireland database
- Ordnance survey plans
- Literature review of peat failures

The Geological Survey of Ireland online dataset viewer (GSI, 2022) for the site were used to verify the soil and bedrock conditions.

The Ordnance Survey plans were reviewed to determine if any notable features or areas of particular interest (from a geotechnical point of view) are present on the site.

The desk study also includes a review of both published literature and GSI online dataset viewer (GSI, 2022) on peat failures/landslides in the vicinity of the site.

3.2 Soils, Subsoil & Bedrock

A review of the Geological Survey of Ireland online database and published documents from GSI was carried out.

The GSI subsoils maps indicates that the site is underlain predominantly of blanket peat, with some pockets of till derived from Devonian and Carboniferous sandstones.

In relation to bedrock, the site location and surrounding area is underlain by the following formations:

- Downpatrick Formation, described as a cross bedded sandstone and siltstone
- Minnaun Sandstone Formation, described as a grey cross bedded sandstone and siltstone

There are 2 no. fault lines identified running southwest to northeast through the site boundary. Both have been described as a structural linework feature.

The nearest quarry is located approximately 6km west of the site location in Bangor Erris, Co. Mayo.

No karst features were identified within 5km of the Proposed Development site.

No geological heritage sites are noted within the site boundary, the closest geological heritage site is located approximately 2.5km east of the proposed development and is described as meandering river channels within an extensive area of Atlantic blanket bog that has an irregular/deranged pattern.

The landslide susceptibility of the Proposed Development site was classified by the GSI (2022) as approximately "moderately low" but ranges from "low" to "high" susceptibility, which is expected given the terrain present.

P20-312 www.fehilytimoney.ie Page 7 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

3.3 Previous Failures

There are 2 no. recorded peat failures within the Proposed Development site (GSI, 2022). The type of landslide has been undefined in each case. An additional failure has been recorded immediately to the west of the proposed development site, which occurred on open peatland. An additional two failures have been recorded approximately 3km to the west and southwest of the Proposed Development site.

The largest failure occurred in 1988 and is reported in a paper by Hendrick (1990). This failure occurred on a concave section of slope where the peat depth was approximately 1.8m. Slope angles ranged from 3 to 7 degrees. A number of forestry drains were present in the area upslope of the failure. The failure occurred following two to three weeks of heavy rain, which had been preceded by two months of relatively dry weather. The preceding dry weather is likely to have led to some cracking of the surface peat and opening of the drains. The heavy rainfall would then have saturated the peat and filled the drains, which it appears were not large enough to allow the water to drain from the slope. Once saturated, the more amorphous peat present at the base of the peat layer began to flow down the slope, crossing a forestry road. This failure can be attributed to a combination of heavy rainfall and inadequate drainage, which trapped water on the slope, saturating and weakening the peat and ultimately leading to the peat failure.

The heads of the relict failures within the site have been avoided when developing the layout of the Proposed Development. An existing access road (to be upgraded) crosses the failure scar of the 1988 failure, however the walkover survey recorded no evidence of instability in this area, and there is not considered to be at risk of failure. No site infrastructure (roads/turbine bases) is proposed within 200m of the head of either of the onsite failures.

P20-312 www.fehilytimoney.ie Page 8 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

4. FINDINGS OF SITE RECONNAISSANCE

4.1 Site Reconnaissance

As part of the assessment of potential peat failure at the Proposed Development site, FT carried out a site reconnaissance in conjunction with the desk study review described in Section 3. This comprised walkover inspections of the site with recording of salient geomorphological features with respect to the wind farm development which included peat depth and preliminary assessment of peat strength. General photographs of the site are included at the end of the main text.

The following salient geomorphological features were considered:

- Active, incipient or relict instability (where present) within the peat deposits
- Presence of shallow valley or drainage line
- Wet areas
- Any change in vegetation
- Peat depth (peat depth data was also collected by MKO in March and June 2021 and April and May 2022)
- Slope inclination and break in slope

The survey covered the proposed locations for the turbine bases and associated infrastructure.

The method adopted for carrying out the site reconnaissance relied on experienced practitioners carrying out a visual assessment of the site supplemented with measurement of slope inclinations.

4.2 Findings of Site Reconnaissance

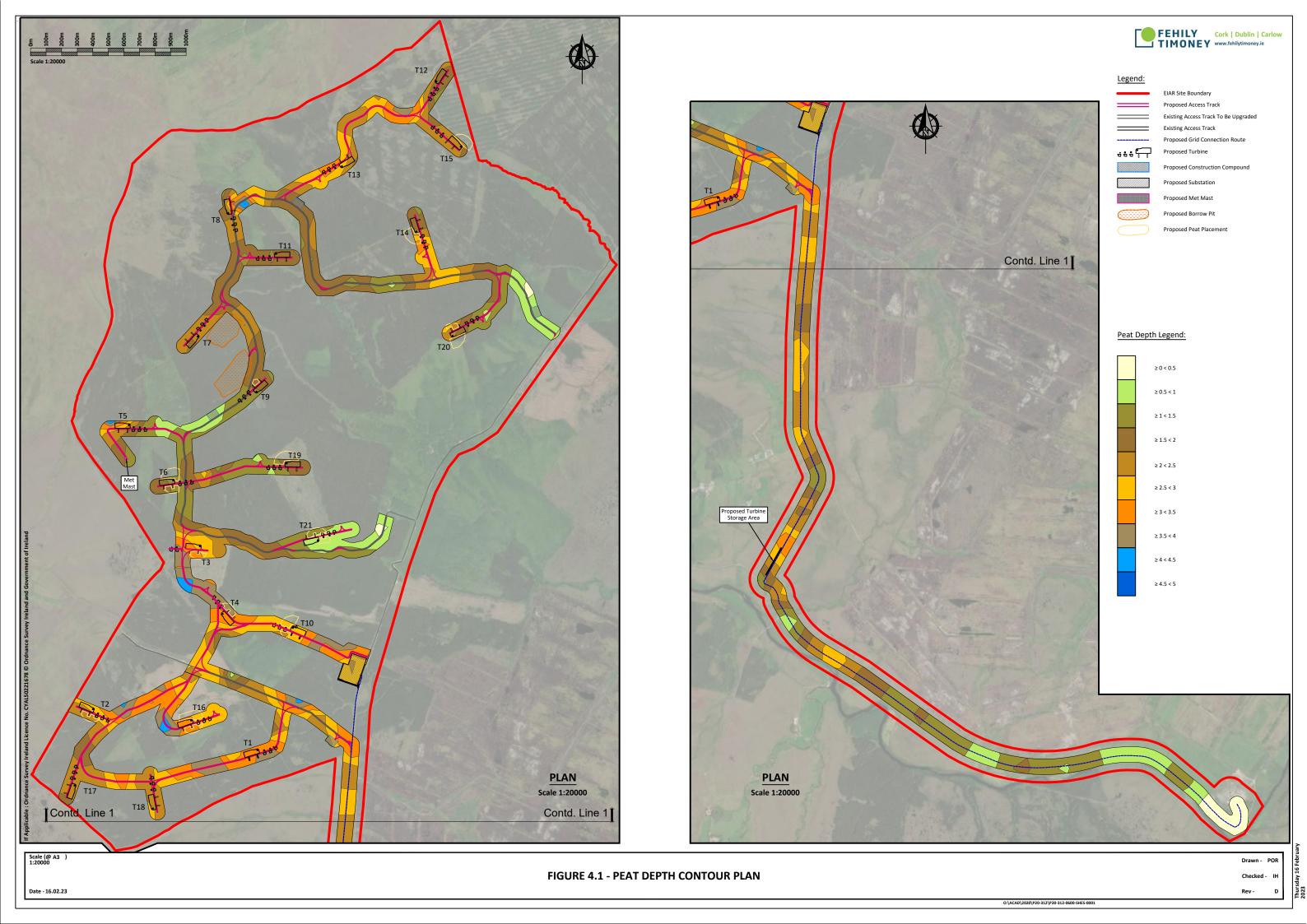
The site reconnaissance undertaken by FT comprised a walkover inspection of the site from the 6th to the 10th September 2021. Weather conditions for the site visits were predominately overcast and rain. Site visits were also undertaken by MKO during March and July 2021 and April and May 2022.

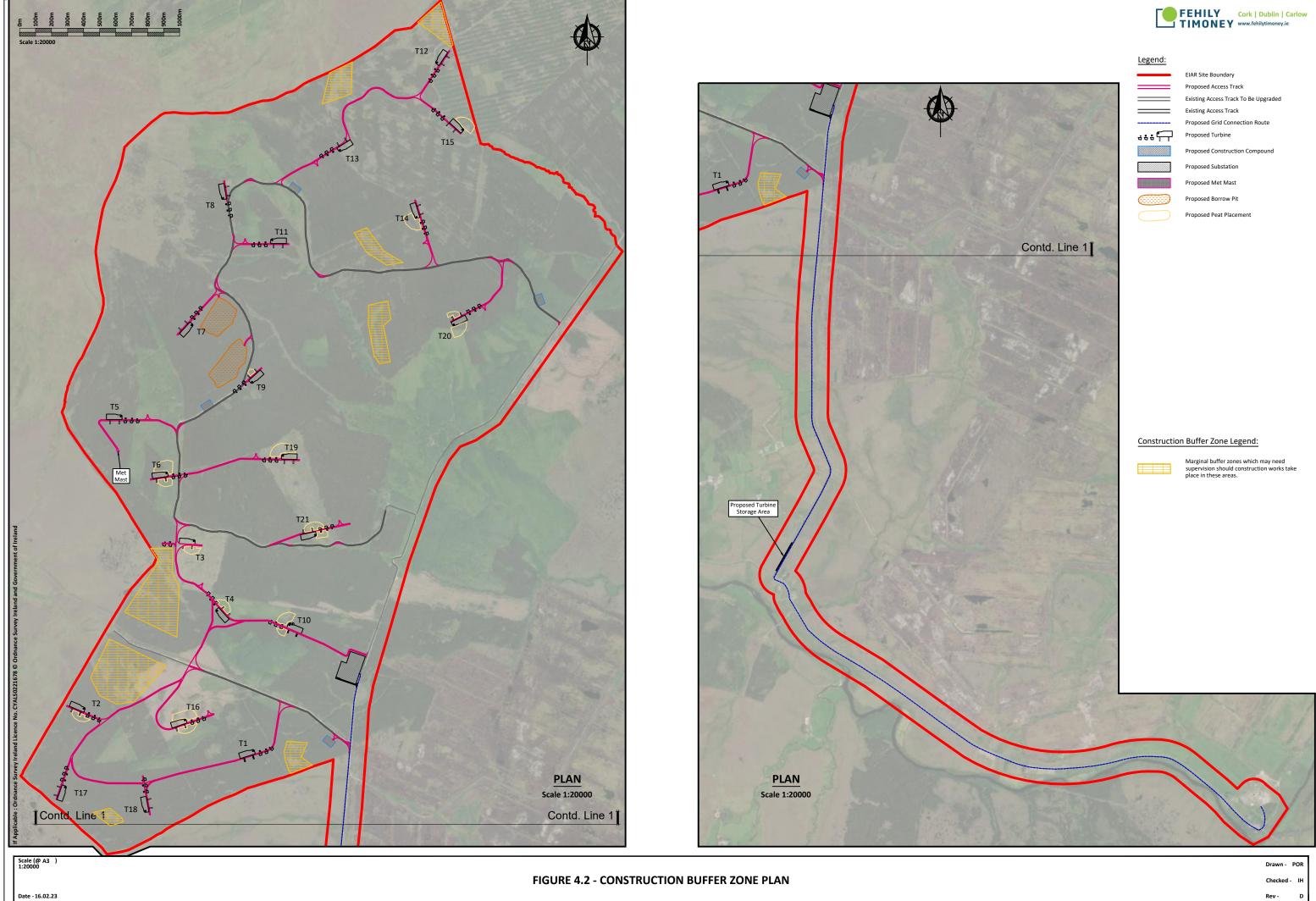
The findings from the site walkover have been used to optimise the layout of the infrastructure on site.

The main findings of the site walkover of the wind farm site are as follows:

- (1) The site is typically covered in a layer of peat and has an undulating terrain. Peat depths vary across the site depending on mainly topography. Generally deeper peat was encountered in the flatter areas of the site with thinner peat on the surrounding slopes. Mature forestry, young forestry, and localised areas of open peatland are present across the site (see Appendix A).
- (2) A total of approximately 960 no. peat depth probes were carried out on site during the various site visits. Peat depths recorded across the site ranged from 0.2 to 5.7m with an average depth of 2.1m (Figure 4-1). Approximately 83 percent of peat depth probes recorded peat depths of less than 3.0m. A number of localised readings were recorded where peat depths were between 3.0 and 5.7m.
- (3) The peat depths recorded at the turbine locations varied from 1.1 to 3.6m with an average depth of 2.3m.
- (4) With respect to the proposed new access roads, peat depths are typically less than 2.0m (average 1.7m) with localised depths of up to 3.9m recorded.

P20-312 ______ www.fehilytimoney.ie _____ Page 9 of 44


PROJECT NAME: SHESKIN SOUTH WIND FARM


REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

- (5) The Proposed Development will comprise both the upgrade of existing internal forestry roads and the construction of new proposed access roads, as well as widening of the local public road. The construction of new proposed access roads will be carried out using an excavate and replace construction technique which involves the removal and replacement of peat or soft ground where encountered, and replacement with granular fill.
- (6) Slope angles at the turbine locations ranged from 2 to 6 degrees. These slope angle readings were obtained using a combination of readings taken during the site reconnaissance by FT using handheld equipment, such as the Silva Clino Master which has an accuracy of +/- 0.25 degrees and from contour survey plans for the site.
- (7) The slope angle quoted typically reflects the slope within the footprint of each infrastructure location. The flat topography/nature of the terrain on site highlights the low risk of peat failure.
- (8) Localised areas of ponded water were recorded. This is not unexpected given the ground conditions and the flat terrain present in localised areas across the site.
- (9) Two past failures are present on site and these have been described earlier. No evidence of ongoing peat instability was noted in these areas, or elsewhere on the site, during the site walkovers.
- (10) A summary of the site walkover findings for the wind farm are as follows:
 - (a) The site is typically covered in a layer of peat with undulating terrain and widespread mature and young forestry and open peatland. Peat depths recorded across the site ranged from 0.2 to 5.7m with an average depth of 2.1m.
 - (b) A construction buffer zone plan has been produced for the site (Figure 4-2). This shows areas on the site with an elevated or higher construction risk. No development is proposed in these areas. The above identified buffer areas are based on qualitative factors identified during the walkover survey e.g. relatively deep peat, quaking peat, mechanically cut peat, historical peat landslide, etc.
 - (c) The results of the peat depth probing, shear strength testing of the peat and qualitative factors identified on site have been used in the stability and risk assessments, see Sections 6, 7 and 8 of this report for details.
 - (d) Based on the findings from the walkover survey, the Proposed Development is considered to have a low risk of peat failure.

P20-312 www.fehilytimoney.ie — Page 10 of 44

Thursday 16 I

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

5. GROUND INVESTIGATION

Ground investigations were carried out at the Proposed Development site by Irish Drilling Limited (IDL) under the supervision of FT in November 2021. Ground investigation in the form of trial pits were carried out on the 1^{st} and 2^{nd} of November 2021.:

The ground investigations by IDL comprised 12 no. trial pits with associated laboratory testing. The trial pits were carried out at various locations across the Proposed Development site to provide information on the ground conditions, and to investigate the potential to develop borrow pits within the site.

The laboratory testing included the following:

- Classification testing for overburden material
- Determination of dry density/moisture content relationship

The trial pits logs, photographs and associated laboratory testing are included within Appendix E of this report. A ground investigation location plan is included as Figure 5-1 in this report.

5.1 Summary of Ground Conditions

The ground conditions at the site can be categorised into the following deposits:

Peat – Typically described as black & brown fibrous peat. Peat thicknesses from the trial pits ranged from 0.2 to 3.5m.

Glacial Till – Soft to firm brown slightly sandy gravelly Silt with cobbles. The thickness of the layer is variable across the site.

Glacial Sands and Gravels – grey clayey coarse Sand and subrounded to subangular medium to coarse Gravel.

Groundwater recorded in the trial pits varied from none to seepages and inflows between 0.9 and 3.2m bgl.

5.2 Summary of Laboratory Tests

Based on the results of the particle size distribution (PSD) tests, the descriptions on the final trial pit logs have been updated.

Atterberg limit tests carried out on the samples classify the cohesive material as Clay of low to intermediate plasticity.

5.3 Summary of Geotechnical Parameters

Table 5-1 contains characteristic geotechnical parameters for the main material types likely to be encountered on the Proposed Development site. Where direct measurement of parameters has not been carried out, established correlations with measured properties have been used to derive values. Characteristic values are

P20-312 www.fehilytimoney.ie — Page 13 of 44

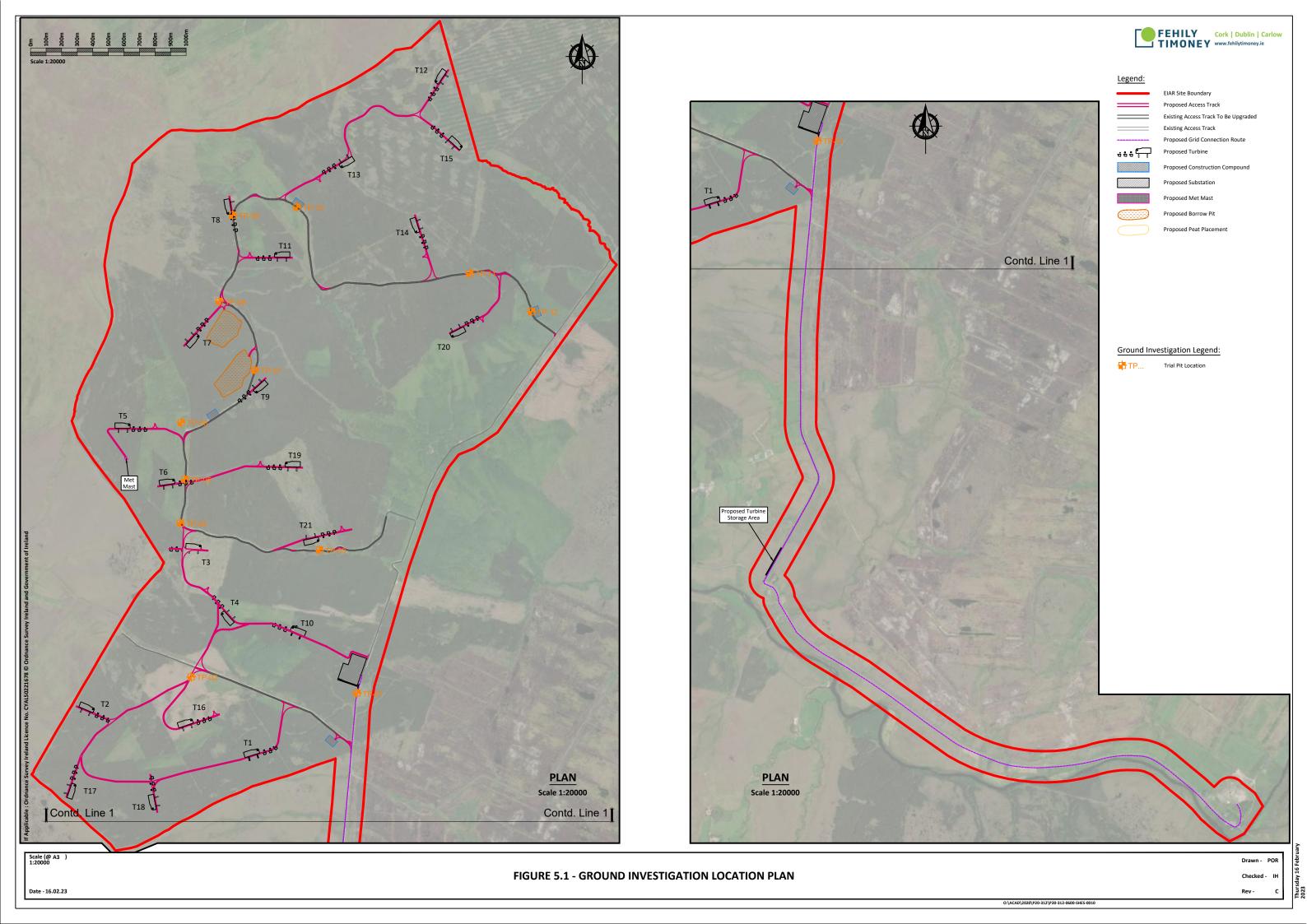
PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

defined as a cautious estimate of the value affecting the occurrence of limit state based on clause 2.4.5.2 from Eurocode 7.

Table 5-1: Summary of Geotechnical Parameters

	Unit	Geotechnical Parameters			
Material Type/Strata	Weight	Undrained Parameters	Drained Parameters		
	γ (kN/m³)	c _u (kPa)	φ' (°) ⁽⁴⁾	c' (kPa)	
Peat	10	5 (3)	25	4	
Glacial Till	19	30	30	0	
Glacial Sand and Gravel	21	-	32	0	


Notes

Note (1) The above parameters are indicative only and have been derived based on experience and from a review of the ground investigation carried out at the site.

Note (2) Where direct measurement of parameters has not been carried out, established correlations with measured properties have been used to derive values.

Note (3) A lower bound undrained shear strength, c_u for the peat of 5kPa was selected. The lowest recorded value on the Sheskin South wind farm site was 5kPa, recorded in one location, hence a value of 5kPa is a conservative value.

Note (4) $\phi^{\mbox{\tiny I}}$ (°) – internal angle of shearing resistance

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

6. PEAT DEPTHS, STRENGTH & SLOPE AT PROPOSED INFRASTRUCTURE LOCATIONS

As part of the site walkover, peat depth, in-situ peat strength and slope angles were recorded at various locations across the site.

6.1 Peat Depth

Peat depth probes were carried out at/near to proposed turbine locations and access roads and other main infrastructure elements. At turbine locations up to 5 probes were carried out around the turbine location, and an average peat depth was calculated.

6.2 Peat Strength

The strength testing was carried out in-situ using a Geonor H-60 Hand-Field Vane Tester. From FT's experience hand vanes give indicative results for in-situ strength of peat and would be considered best practice for the field assessment of peat strength.

6.3 Slope Angle

The slope angles at each of the main infrastructure locations were obtained using a combination of readings taken during the site reconnaissance by FT using handheld equipment, such as the Silva Clino Master and from contour survey plans for site.

The slope angle quoted typically reflects the slope within the footprint of each infrastructure location. It should be noted that slope angles derived from contour survey plans would be considered approximate, as such surveys are dependent on the density of survey data and do not always reflect local variations in ground topography. Slope angles recorded during the site reconnaissance by FT using handheld equipment would generally be deemed more accurate and representative of local topography.

6.4 Summary of Findings

Based on the peat depths recorded across the site by FT and MKO, the peat varied in depth from 0.2 to 5.7m with an average depth of 2.1m. All peat depth probes carried out on site have been utilised to produce a peat depth contour plan for the site (Figure 4.1).

A summary of the peat depths at the proposed infrastructure locations is given in Table 6.1. The data presented in Table 6.1 is used in the peat stability assessment of the site.

P20-312 www.fehilytimoney.ie — Page 16 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM
REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Table 6.1: Peat Depth & Slope Angle at Proposed Infrastructure Locations

Turbine	Easting	Northing	Peat Depth Range (m) ⁽¹⁾	Average Peat Depth (m)	Slope Angle (°)
T01	493541	824049	2.7 – 3.0	2.8	3
T02	492484	824313	1.2 – 2.0	1.7	3
T03	493171	825359	1.0 – 1.6	1.3	5
T04	493318	824924	2.7 – 3.4	3.0	2
T05	492715	826139	2.4 – 2.8	2.6	5
T06	493000	825783	0.7 – 1.2	1.0	5
T07	493158	826709	1.8 – 2.3	2.1	5
T08	493355	827503	1.2 – 1.7	1.5	6
T09	493535	826353	0.9 – 1.1	1.0	6
T10	493769	824835	2.0 – 2.5	2.4	4
T11	493661	827239	0.9 – 1.8	1.3	4
T12	494691	828349	2.1 – 3.6	2.6	4
T13	494085	827802	1.8 – 2.8	2.4	3
T14	494563	827383	1.8 – 2.5	2.1	3
T15	494848	827929	1.8 – 2.6	2.0	4
T16	493115	824241	2.2 – 2.7	2.6	2
T17	492366	823822	2.0 – 2.4	2.2	3
T18	492870	823674	2.5 – 3.0	2.8	3
T19	493729	825892	1.3 – 1.8	1.4	5
T20	494796	826712	2.0 – 2.9	2.4	5
T21	493929	825397	0.3 – 1.4	0.6	4
Met Mast	492700	825934	0.7 – 1.9	1.2	4
Construction Compound (1)	494058	824104	1.9 – 3.0	2.5	3
Construction Compound (2)	493275	826243	0.8 – 1.7	1.2	4
Construction Compound (3)	493790	827608	0.6 – 1.8	1.2	4
Construction Compound (4)	495340	826865	0.4 – 1.3	0.8	5
Substation	494111	824433	1.3 – 3.3	2.4	3
Borrow Pit (1)	493341	826777	0.9	0.9	5
Borrow Pit (2)	493436	826478	1.6	1.6	4

P20-312 www.fehilytimoney.ie — Page 17 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Note (1) Based on probe results from the site walkovers. The range of peat depths for the infrastructure locations are typically based on a 10m grid carried out around the infrastructure element, where accessible.

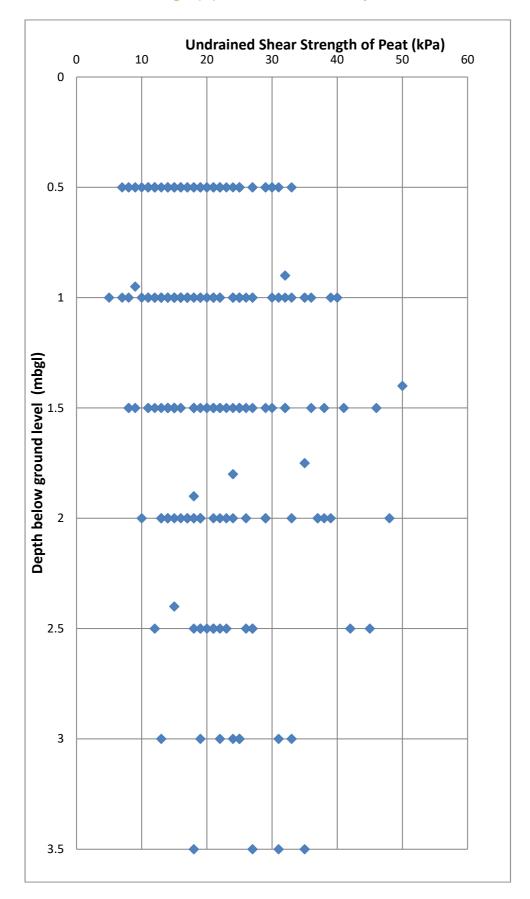
Note (2) The slope angles at each of the main infrastructure locations were obtained using a combination of readings taken during the site reconnaissance by FT using handheld equipment, such as the Silva Clino Master (which has an accuracy of +/- 0.25 degrees) and from contour survey plans for site. The slope angle quoted typically reflects the slope within the footprint of each infrastructure location.

Note (3) The data presented in the Table above is used in the peat stability assessment of the site.

In addition to probing, in-situ shear vane testing was carried out as part of the ground investigation. Strength testing was carried out at turbine and other selected locations across the site to provide representative coverage of indicative peat strengths. The results of the vane testing with depth are presented in Figure 6.1.

The hand vane results indicate undrained shear strengths in the range 5 to 50kPa, with an average value of about 20kPa. The strengths recorded would be typical of well drained peat as is present on the Proposed Development site.

Peat strength at sites of known peat failures (assuming undrained loading failure) are generally very low, for example the undrained shear strength at the Derrybrien failure (AGEC, 2004) as derived from back-analysis, was estimated at 2.5kPa. The recorded undrained strength at Sheskin South is significantly greater than the lower bound values for Derrybrien indicating that there is no close correlation to the peat conditions at the Derrybrien site and that there is significantly less likelihood of failure on the Proposed Development site.


P20-312 www.fehilytimoney.ie — Page 18 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Figure 6.1: Undrained Shear Strength (c_u) Profile for Peat with Depth

P20-312 www.fehilytimoney.ie — Page 19 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

7. PEAT STABILITY ASSESSMENTS

The peat stability assessment includes an assessment of the stability of the natural peat slopes for individual parcels across the site including at the turbine locations and along the proposed access roads. The assessment also analyses the stability of the natural peat slopes with a surcharge loading of 10kPa, equivalent to placing 1m of stockpiled peat on the surface of the peat slope.

7.1 Methodology for Peat Stability Assessment

Stability of a peat slope is dependent on several factors working in combination. The main factors that influence peat stability are slope angle, shear strength of peat, depth of peat, pore water pressure and loading conditions.

An adverse combination of factors could potentially result in peat sliding. An adverse condition of one of the above-mentioned factors alone is unlikely to result in peat failure. The infinite slope model (Skempton and DeLory, 1957) is used to combine these factors to determine a factor of safety for peat sliding. This model is based on a translational slide, which is a reasonable representation of the dominant mode of movement for peat failures.

To assess the factor of safety for a peat slide, an undrained (short-term stability) and drained (long-term stability) analysis has been undertaken to determine the stability of the peat slopes on site.

- 1. The undrained loading condition applies in the short-term during construction and until construction induced pore water pressures dissipate.
- 2. The drained loading condition applies in the long-term. The condition examines the effect of the change in groundwater level as a result of rainfall on the existing stability of the natural peat slopes.

Undrained shear strength values (c_u) for peat are used for the total stress analysis. Based on the findings of the 2003 Derrybrien failure and other failures in peat, undrained loading during construction was found to be the critical failure mechanism.

A drained analysis requires effective cohesion (c') and effective friction angle (ϕ') values for the calculations. These values can be difficult to obtain because of disturbance experienced when sampling peat and the difficulties in interpreting test results due to the excessive strain induced within the peat. To determine suitable drained strength values a review of published information on peat was carried out. Table 7.1 shows a summary of the published information on peat together with drained strength values.

From Table 8.1 the values for c' ranged from 1.1 to 8.74kPa and ø' ranged from 21.6 to 43°. The average c' and ø' values are 4.5kPa and 30° respectively. Based on the above, it was considered to adopt a conservative approach and to use design values below the averages. For design the following general drained strength values have been used for the site:

$$c' = 4kPa$$

 $\phi' = 25^{\circ}$

P20-312 www.fehilytimoney.ie — Page 20 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Table 7.1: List of Effective Cohesion and Friction Angle Values for Peat

Reference	Cohesion, c' (kPa)	Friction Angle, ø' (degs)	Testing Apparatus/ Comments
Hanrahan et al (1967)	5 to 7	36 to 43	From triaxial apparatus
Rowe and Mylleville (1996)	2.5	28	From simple shear apparatus
Landva (1980)	2 to 4	27.1 to 32.5	Mainly ring shear apparatus for normal stress greater than 13kPa
	5 to 6	-	At zero normal stress
Carling (1986)	6.5	0	-
Farrell and Hebib	0	38	From ring shear and shear box apparatus. Results are not considered representative.
(1998)	0.61	31	From direct simple shear (DSS) apparatus. Result considered too low therefore DSS not considered appropriate
Rowe, Maclean and	1.1	26	From simple shear apparatus
Soderman (1984)	3	27	From DSS apparatus
McGreever and Farrell	6	38	From triaxial apparatus using soil with 20% organic content
(1988)	6	31	From shear box apparatus using soil with 20% organic content
Hungr and Evans (1985)	3.3	-	Back-analysed from failure
Dykes and Kirk (2006)	3.2	30.4	Test within acrotelm
Dykes and Kirk (2006)	4	28.8	Test within catotelm
Warburton et al (2003)	5	23.9	Test in basal peat
Warburton et al (2003)	8.74	21.6	Test using fibrous peat
Hendry et al (2012)	0	31	Remoulded test specimen
Komatsu et al (2011)	8	34	Remoulded test specimen
Zwanenburg et al (2012)	2.3	32.3	From DSS apparatus
Den Haan & Grognet (2014)	-	37.4	From large DSS apparatus
O'Kelly & Zhang (2013)	0	28.9 to 30.3	Tests carried out on reconstituted, undisturbed and blended peat samples

P20-312 www.fehilytimoney.ie — Page 21 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

7.2 Analysis to Determine Factor of Safety (Deterministic Approach)

The purpose of the analysis was to determine the Factor of Safety (FoS) of the peat slopes using infinite slope analysis. The analysis was carried out at the turbine locations, along the proposed access roads and at various locations across the site.

The FoS provides a direct measure of the degree of stability of the slope. A FoS of less than 1.0 indicates that a slope is unstable, a FoS of greater than 1.0 indicates a stable slope.

The acceptable safe range for FoS typically ranges from 1.3 to 1.4. The previous code of practice for earthworks BS 6031:1981 (BSI, 1981), provided advice on design of earthworks slopes. It stated that for a first-time failure with a good standard of site investigation the design FoS should be greater than 1.3.

As a general guide the FoS limits for peat slopes in this report are summarised in Table 7.2.

Table 7.2: Factor of Safety Limits for Slopes

Factor of Safety (FoS)	Degree of Stability	
Less than 1.0	Unstable (red)	
Between 1.0 and 1.3	Marginally stable (yellow)	
1.3 or greater	Acceptable (green)	

Eurocode 7 (EC7) (IS EN 1997-1:2005) now serves as the reference document and the basis for design geotechnical engineering works. The design philosophy used in EC7 applies partial factors to soil parameters, actions and resistances. Unlike the traditional approach, EC7 does not provide a direct measure of stability, since global Factors of Safety are not used.

As such, and in order to provide a direct measure of the level of safety on a site, EC7 partial factors have not been used in this stability assessment. The results are given in terms of FoS.

A lower bound undrained shear strength, c_u for the peat of 6kPa was selected for the assessment based on the c_u values recorded at the site. It should be noted that a c_u of 6kPa for the peat is considered a conservative value for the analysis and is not representative of all peat present across the site. In reality the peat generally has a higher undrained strength.

The formula used to determine the factor of safety for the undrained condition in the peat (Bromhead, 1986) is as follows:

$$F = \frac{c_u}{\gamma z \sin \alpha \cos \alpha}$$

Where:

F = Factor of Safety

 c_u = Undrained strength

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

y = Bulk unit weight of material

z = Depth to failure plane assumed as depth of peat

 α = Slope angle

The formula used to determine the factor of safety for the drained condition in the peat (Bromhead, 1986) is as follows:

$$F = \frac{c' + (\chi z - \gamma_w h_w) \cos^2 \alpha \tan \phi'}{\chi z \sin \alpha \cos \alpha}$$

Where:

F = Factor of Safety

c' = Effective cohesion

y = Bulk unit weight of material (Peat)

z = Depth to failure plane assumed as depth of peat

 γ_w = Unit weight of water

 h_w = Height of water table above failure plane

 α = Slope angle

 ϕ' = Effective friction angle

For the drained analysis the level of the water table above the failure surface is required to calculate the factor of safety for the slope. Since the water level in blanket peat can be variable and can be recharged by rainfall, it is not feasible to establish its precise location throughout the site. Therefore, a sensitivity analysis using water level ranging between 0% and 100% of the peat depth was conducted, where 0% equates to the peat being completely dry and 100% equates to the peat been fully saturated.

The following general assumptions were used in the analysis of peat slopes at each location:

- (1) Peat depths are based on the maximum peat depth recorded at each location from the walkover surveys.
- (2) The slope angles used in the peat stability assessment were obtained using a combination of readings taken during the site reconnaissance by FT using handheld equipment and from contour survey plans for site. It should be noted that slope angles derived from contour survey plans would be considered approximate, as such surveys are dependent on the density of survey data and do not always reflect local variations in ground topography.
- (3) Slope angle at base of sliding assumed to be parallel to ground surface.
- (4) A lower bound undrained shear strength, c_u for the peat of 5kPa and 6kPa, depending on the location, was selected for the assessment. The value of 6kPa was used in areas with steeper slopes. The lowest recorded value on the Sheskin South wind farm site during the site walkover was 5kPa. It should be noted that a c_u of 5/6kPa for the peat is considered a conservative value for the analysis and is not representative of all peat present across the site. In reality, the majority of the peat has a significantly higher undrained strength as a result of the extensive drainage present within the forestry across the site.

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

For the stability analysis two load conditions were examined, namely

Condition (1): no surcharge loading

Condition (2): surcharge of 10 kPa, equivalent to 1m of stockpiled peat assumed as a worst case.

7.3 Results of Analysis

7.3.1 <u>Undrained Analysis for the Peat</u>

The results of the undrained analysis for the natural peat slopes at all locations analysed are presented in Appendix C and the results of the undrained analysis for the most critical load case (load condition 2) are shown on Figure 7.1. The undrained analysis for load condition 2 is considered the most critical load case as most peat failures occur in the short term upon loading of the peat surface. The results from the main infrastructure locations, including along access roads and in areas of peat placement, are summarised in Table 7.3 to 7.5.

The calculated FoS for load condition 1 is in excess of 1.30 for each of the locations (313 no. locations) analysed with a range of FoS of 1.75 to 71.68, indicating a low risk of peat instability.

The calculated FoS for load condition 2 is in excess of 1.30 for each of the locations (313 no. locations) analysed with a range of FoS of 1.31 to 11.95, again indicating a low risk of peat instability.

Table 7.3: Factor of Safety Results (Undrained Condition)

Turbine No./Waypoint	Easting	Northing	Factor of Safety for Load Condition		
			Condition (1)	Condition (2)	
T01	493540	824053	3.19	2.39	
T02	492485	824313	4.78	3.19	
T03	493171	825360	3.60	2.21	
T04	493318	824925	4.22	3.26	
T05	492715	826139	2.06	1.52	
T06	493000	825784	4.80	2.62	
T07	493158	826709	2.50	1.75	
T08	493355	827503	2.83	1.78	
T09	493535	826354	4.37	2.29	
T10	493830	824773	2.87	2.05	
T11	493662	827239	3.99	2.57	
T12	494692	828350	2.00	1.56	
T13	494085	827802	3.42	2.52	
T14	494563	827383	3.83	2.73	

P20-312 www.fehilytimoney.ie — Page 24 of 44

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Turbine No./Waypoint	Easting	Northing	Factor of Safety for Load Condition	
			Condition (1)	Condition (2)
T15	494849	827929	2.76	2.00
T16	493115	824241	5.31	3.87
T17	492367	823822	3.99	2.81
T18	492870	823674	3.19	2.39
T19	493729	825893	3.20	2.06
T20	494797	826713	1.99	1.48
T21	493929	825398	5.13	2.99
Met Mast	492700	825934	3.78	2.48
Construction Compound (1)	494058	824104	3.19	2.39
Construction Compound (2)	493275	826243	4.23	2.66
Construction Compound (3)	493790	827608	3.99	2.57
Construction Compound (4)	495340	826865	4.43	2.50
Substation	494111	824433	2.90	2.22
Borrow Pit (1)	493341	826777	6.40	3.03
Borrow Pit (2)	493436	826478	4.49	2.76

Table 7.4: Factor of Safety Results along Access Roads (Undrained Condition)

Turbine No./Waypoint	Easting	Northing	Factor of Safety for Load Condition		
raname man, may pame			Condition (1)	Condition (2)	
Main Spine Road	Va	ries	2.83	1.78	
Site Entrance to Southern Loop	Varies		2.04	1.68	
Southern Loop	Vā	ries	2.00	1.56	
Spur to T2	Varies		3.99	2.81	
Spur to T17	Varies		3.99	2.81	
Spur to T18	Varies		3.99	2.39	
T3 to T16	Varies		1.87	1.38	
T4 to Substation	Varies		1.94	1.53	
Spur to T12, T13 & T15	Varies		1.96	1.42	
Spur to T20	Varies		2.18	1.45	
Spur to T14	Vā	aries	2.40	1.80	

P20-312 www.fehilytimoney.ie — Page 25 of 44

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Turbine No./Waypoint	Easting	Northing	Factor of Safety for Load Condition		
			Condition (1)	Condition (2)	
Spur to T11	Varies		3.03	1.99	
Spur to T7	Varies		1.94	1.42	
Spur to T5 & Met. Mast	Varies		1.98	1.42	
Spur to T21	Varies		5.13	2.99	
T6 to T19	Vā	ries	2.91	1.87	

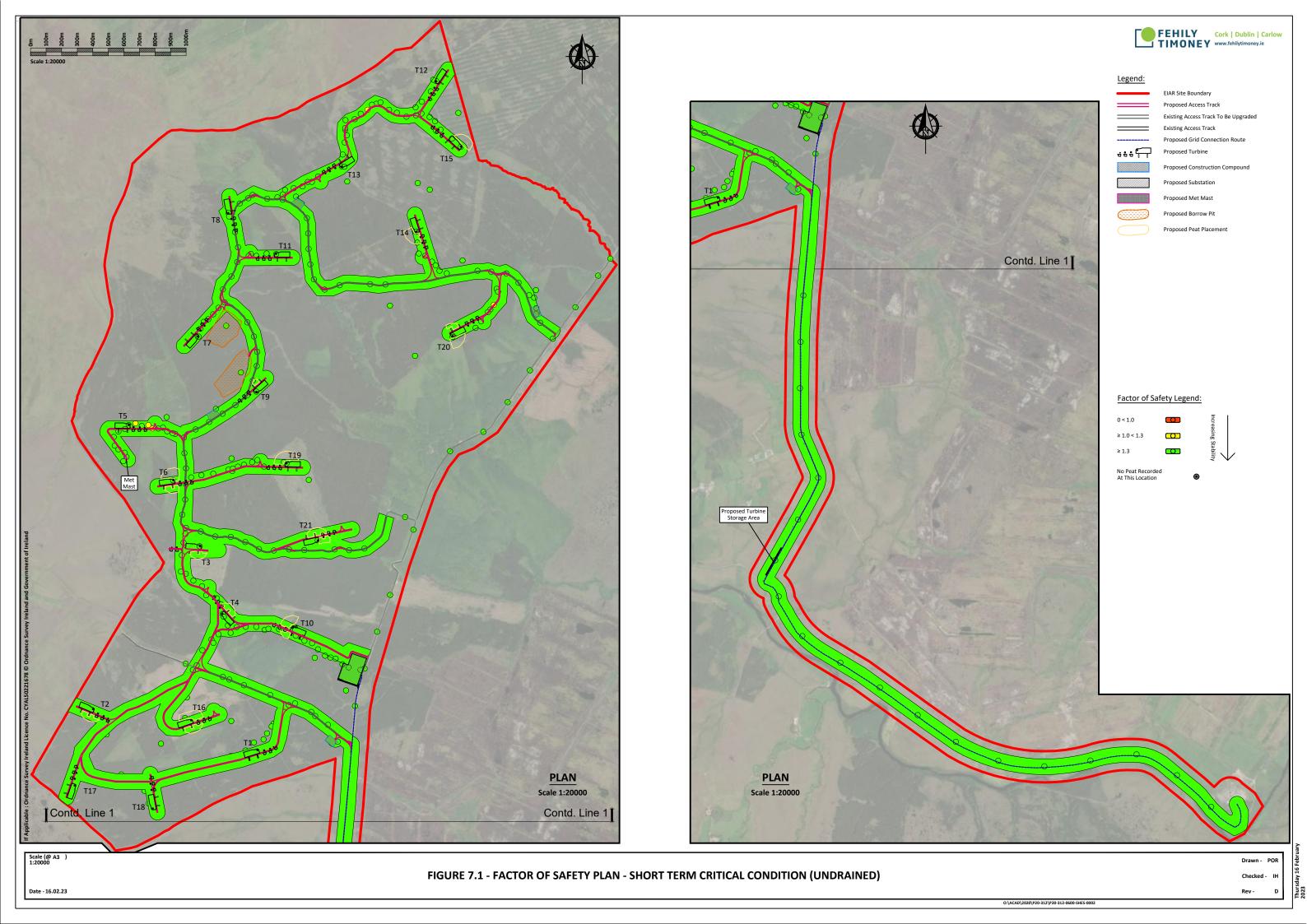
Table 7.5: Factor of Safety Results Peat Placement Areas (Undrained Condition)

Location	Easting	Northing	Factor of Safety for Load Condition	
			Condition (1)	Condition (2)
T2	Varies		4.78	3.19
T3	Varies		3.60	2.21
T4	Varies		4.22	3.26
T6	Varies		4.80	2.62
Т9	Varies		4.37	2.29
T10	Varies		2.87	2.05
T14	Varies		3.83	2.73
T15	Varies		2.76	2.00
T16	Varies		5.31	3.87
T19	Varies		3.20	2.06
T20	Varies		1.99	1.48
T21	Varies		5.13	2.99

Table 7.6: Factor of Safety Results Settlement Ponds (Undrained Condition)

Location	Settlement Pond Number	Factor of Safety for Load Condition	
	Number	Condition (1)	Condition (2)
T1	tbc	3.09	2.33
T2	tbc	2.90	2.22
T3	tbc	1.92	1.44
T4	tbc	3.19	2.49
T5	tbc	2.19	1.50

P20-312 www.fehilytimoney.ie — Page 26 of 44


PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Location	Settlement Pond Number	Factor of Safety for Load Condition		
	Number	Condition (1)	Condition (2)	
T6	tbc	3.03	1.99	
Т7	tbc	2.62	1.80	
Т8	tbc	3.21	1.92	
Т9	tbc	2.34	1.53	
T10	tbc	1.89	1.50	
T11	tbc	2.12	1.43	
T12	tbc	4.23	2.66	
T13	tbc	3.83	2.73	
T14	tbc	3.09	2.33	
T15	tbc	3.59	2.40	
T16	tbc	4.10	3.19	
T17	tbc	4.56	3.09	
T18	tbc	2.76	2.00	
T19	tbc	3.39	2.13	
T20	tbc	3.84	2.30	
T21	tbc	5.53	3.12	
Met Mast	tbc	3.78	2.48	
Substation	tbc	2.90	2.22	
Construction Compound (1)	tbc	3.19	2.39	
Construction Compound (2)	tbc	4.23	2.66	
Construction Compound (3)	tbc	4.79	2.87	
Construction Compound (4)	tbc	4.43	2.50	
Borrow Pit (1)	tbc	2.40	1.60	
Borrow Pit (2)	tbc	2.29	1.55	

P20-312 **www.fehilytimoney.ie** — Page 27 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

7.3.2 <u>Drained Analysis for the Peat</u>

The results of the drained analysis for the peat are presented in Appendix C. The results from the main infrastructure locations, including along access roads and in areas of peat placement, are summarised in Table 7.6 to 7.8. As stated previously, the drained loading condition examines the effect of in particular, rainfall on the existing stability of the natural peat slopes and represents the post construction phase of the development.

The calculated FoS for load condition 1 is in excess of 1.30 for each of the locations (313 no. locations) analysed with a range of FoS of 1.59 to 57.34, indicating a low risk of peat instability.

The calculated FoS for load condition 2 is in excess of 1.30 for each of the locations (313 no. locations) analysed with a range of FoS of 2.55 to 20.68, indicating a low risk of peat instability.

Table 7.7: Factor of Safety Results (Drained Conditions)

Turbine No./Waypoint	Easting	Northing	Factor of Safety for Load Condition	
			Condition (1)	Condition (2)
T01	493540	824053	2.55	4.14
T02	492485	824313	3.83	5.52
T03	493171	825360	2.88	3.82
T04	493318	824925	3.37	5.64
T05	492715	826139	1.65	2.61
T06	493000	825784	3.84	4.52
T07	493158	826709	2.00	3.01
T08	493355	827503	2.26	3.07
T09	493535	826354	3.50	3.94
T10	493830	824773	2.30	3.55
T11	493662	827239	3.19	4.43
T12	494692	828350	1.60	2.70
T13	494085	827802	2.73	4.36
T14	494563	827383	3.06	4.73
T15	494849	827929	2.21	3.45
T16	493115	824241	4.25	6.71
T17	492367	823822	3.19	4.87
T18	492870	823674	2.55	4.14
T19	493729	825893	2.56	3.55
T20	494797	826713	1.59	2.55
T21	493929	825398	4.11	5.17
Met Mast	492700	825934	3.03	4.28

P20-312 www.fehilytimoney.ie — Page 29 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Turbine No./Waypoint	Easting	Northing	Factor of Safety for Load Condition	
			Condition (1)	Condition (2)
Construction Compound (1)	494058	824104	2.55	4.14
Construction Compound (2)	493275	826243	3.38	4.60
Construction Compound (3)	493790	827608	3.19	4.43
Construction Compound (4)	495340	826865	3.54	4.32
Substation	494111	824433	2.32	3.94
Borrow Pit (1)	493341	826777	5.12	5.23
Borrow Pit (2)	493436	826478	3.59	4.78

Table 7.8: Factor of Safety Results along access roads (Drained Condition)

Turbine No./Waypoint	Easting Northing			afety for Load dition
			Condition (1)	Condition (2)
Main Spine Road	Va	ries	1.87	2.64
Site Entrance to Southern Loop	Va	ries	1.63	2.90
Southern Loop	Va	ries	1.60	2.70
Spur to T2	Va	ries	3.19	4.87
Spur to T17	Va	ries	3.19	4.87
Spur to T18	Varies		2.55	4.14
T3 to T16	Varies		1.50	2.38
T4 to Substation	Varies		1.55	2.64
Spur to T12, T13 & T15	Varies		1.31	2.03
Spur to T20	Va	ries	1.45	2.07
Spur to T14	Va	ries	1.92	3.10
Spur to T11	Varies		2.42	3.43
Spur to T7	Varies		1.55	2.44
Spur to T5 & Met. Mast	Varies		1.32	2.03
Spur to T21	Va	ries	4.11	5.17
T6 to T19	Va	ries	2.33	3.23

P20-312 www.fehilytimoney.ie — Page 30 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Table 7.9: Factor of Safety Results Peat Placement Areas (Drained Condition)

Location	Easting	Northing		fety for Load dition
			Condition (1)	Condition (2)
T2	Va	iries	3.83	5.52
T3	Va	iries	2.88	3.82
T4	Va	iries	3.37	5.64
T6	Va	iries	3.84	4.52
Т9	Va	iries	2.26	3.07
T10	Varies		2.30	3.55
T14	Varies		3.06	4.73
T15	Varies		2.21	3.45
T16	Varies		4.25	6.71
T19	Varies		2.56	3.55
T20	Varies		1.59	2.55
T21	Va	iries	4.11	5.17

Table 7.10: Factor of Safety Results Settlement Ponds (Drained Condition)

Location	Settlement Pond Number	Factor of Safety for Load Condition		
	Number	Condition (1)	Condition (2)	
T1	tbc	2.47	4.04	
T2	tbc	2.32	3.85	
Т3	tbc	1.54	2.48	
T4	tbc	2.55	4.32	
T5	tbc	1.75	2.59	
T6	tbc	2.42	3.43	
Т7	tbc	2.09	3.11	
Т8	tbc	2.57	3.31	
Т9	tbc	1.87	2.64	
T10	tbc	1.51	2.59	
T11	tbc	1.69	2.47	
T12	tbc	3.38	4.60	
T13	tbc	3.06	4.73	

P20-312 www.fehilytimoney.ie — Page 31 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Location	Settlement Pond Number	Factor of Safety for Load Condition		
	Nullibel	Condition (1)	Condition (2)	
T14	tbc	2.47	4.04	
T15	tbc	2.87	4.14	
T16	tbc	3.28	5.52	
T17	tbc	3.64	5.34	
T18	tbc	2.21	3.45	
T19	tbc	2.71	3.68	
T20	tbc	3.07	3.97	
T21	tbc	4.42	5.40	
Met Mast	tbc	3.03	4.28	
Substation	tbc	2.32	3.85	
Construction Compound (1)	tbc	2.55	4.14	
Construction Compound (2)	tbc	3.38	4.60	
Construction Compound (3)	tbc	3.83	4.97	
Construction Compound (4)	tbc	3.54	4.32	
Borrow Pit (1)	tbc	1.92	2.76	
Borrow Pit (2)	tbc	1.83	2.67	

7.4 Stability of Borrow Pit Berm

A stability check has been undertaken to demonstrate the stability of the proposed perimeter berms around the proposed borrow pits. The perimeter berm is considered to be more critical than any internal buttresses, as peat is only present on one side of the buttress. Slope stability has been checked using SlopeW© slope stability software. The analysis was carried out to EC7 design standards. The design philosophy used in EC7 applies partial factors to soil parameters, actions and resistances. Unlike the traditional approach, EC7 does not provide a direct measure of stability, since global Factors of Safety are not used. Rather, it provides a result in terms of an overdesign ratio (ODR), where an ODR of >1 is stable, and an ODR of <1 is unstable.

The following material properties have been used in the stability assessment. A low strength for the peat retained within the borrow pit/repositories has been used to model the effect of disturbance on the saturated peat mass.

P20-312 www.fehilytimoney.ie — Page 32 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Table 7.11: Material Properties

Material	Unit Weight (kN/m³)	Undrained Shear Strength, c _u (kPa)	Angle of Shearing Resistance, φ (degrees)	Effective Cohesive, c' (kPa)
Intact Peat	10.5	8	25	4
Granular fill (berm)	21	-	42	0
Retained Peat within	10.5	2	5	2
Borrow Pit (disturbed)				
Glacial Sand and Gravel	20	-	32	-
Bedrock	21	-	34	250

The berm along the southeastern side of the borrow pits will be up to 6m in height. Bedrock has been assessed at 2m below ground level based on the available ground investigation information, overlain by 0.75m of peat and 1.25m of granular glacial material. All peat and any soft clay that may be present will be excavated from below the perimeter berm. The base of the rock berm will be benched into the glacial till to create a level platform (not shown in stability output). The inside slope of the perimeter berm has been modelled as a 60 degree slope in intact bedrock, and the outside slope as 40 degrees. Groundwater has been assumed at ground level on the downslope side of the berm.

The stability analysis has been undertaken using both undrained (short term) and drained (long term) strength parameters and shows that the berm is stable in both cases.

Table 7.12: Borrow Pit Stability Analysis

Borrow Pit	Over Design Ratio (ODR)		
	DA1C1	DA1C2	
Undrained Analysis	1.43	1.14	
Drained Analysis	1.44	1.15	

P20-312 www.fehilytimoney.ie — Page 33 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

8. PEAT STABILITY RISK ASSESSMENT

A peat stability risk assessment was carried out for the main infrastructure elements at the Proposed Development. This approach takes into account guidelines for geotechnical/peat stability risk assessments as given in PLHRA (2017) and MacCulloch (2005).

The risk assessment uses the results of the stability analysis (deterministic approach) in combination with qualitative factors, which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability, to assess the risk for each infrastructure element.

For each of the main infrastructure elements, a risk rating (product of probability and impact) is calculated and rated as shown in Table 8.1. Where a subsection is rated 'Medium' or 'High', control measures are required to reduce the risk to at least a 'Low' risk rating. Where a subsection is rated 'Low' or 'Negligible', only routine control measures are required.

Table 8.1: Risk Rating Legend

17 to 25	High: avoid works in area or significant control measures required			
11 to 16	Medium: notable control measures required			
5 to 10	Low: only routine control measures required			
1 to 4	Negligible: none or only routine control measures required			

A full methodology for the peat stability risk assessment is given in Appendix D.

8.1 Summary of Risk Assessment Results

The results of the peat stability risk assessment for potential peat failure at the main infrastructure elements is presented as a Geotechnical Risk Register in Appendix B and summarised in Table 8.2.

The risk rating for each infrastructure element at the Proposed Development is designated Negligible or Low following some general mitigation/control measures being implemented. Sections of access roads to the nearest infrastructure element will be subject to the same mitigation/control measures that apply to the nearest infrastructure element.

Details of the required mitigation/control measures can be found in the Geotechnical Risk Register for each infrastructure element (Appendix B) and are summarised below:

- Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.
- Use of experienced geotechnical staff for site investigation.
- Maintain hydrology of area as far as possible by maintaining existing drains to prevent the build-up of water pressures in the peat, leading to the peat becoming "buoyant".
- Use of experienced contractors and trained operators to carry out the work.

P20-312 www.fehilytimoney.ie — Page 34 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Table 8.2: Summary of Peat Stability Risk Register

Infrastructure	Pre-Control Measure Implementation Risk Rating	Pre-Control Measure Implementation Risk Rating Category	Notable Control Measures Required	Post-General Control Measure Implementation Risk Rating	Post-General Control Measure Implementation Risk Rating Category
T01	Low	5 to 10	No	Negligible	1 to 4
T02	Negligible	1 to 4	No	Negligible	1 to 4
T03	Low	5 to 10	No	Low	5 to 10
T04	Low	5 to 10	No	Low	5 to 10
T05	Low	5 to 10	No	Low	5 to 10
T06	Low	5 to 10	No	Low	5 to 10
T07	Negligible	1 to 4	No	Negligible	1 to 4
T08	Negligible	1 to 4	No	Negligible	1 to 4
T09	Negligible	1 to 4	No	Negligible	1 to 4
T10	Low	5 to 10	No	Negligible	1 to 4
T11	Low	5 to 10	No	Low	5 to 10
T12	Negligible	1 to 4	No	Negligible	1 to 4
T13	Low	5 to 10	No	Negligible	1 to 4
T14	Negligible	1 to 4	No	Negligible	1 to 4
T15	Low	5 to 10	No	Low	5 to 10
T16	Low	5 to 10	No	Negligible	1 to 4
T17	Negligible	1 to 4	No	Negligible	1 to 4
T18	Low	5 to 10	No	Low	5 to 10
T19	Negligible	1 to 4	No	Negligible	1 to 4
T20	Low	5 to 10	No	Low	5 to 10
T21	Low	5 to 10	No	Low	5 to 10
Met Mast	Low	5 to 10	No	Low	5 to 10
Construction Compound (1)	Low	5 to 10	No	Low	5 to 10
Construction Compound (2)	Low	5 to 10	No	Negligible	1 to 4
Construction Compound (3)	Low	5 to 10	No	Negligible	1 to 4

P20-312 www.fehilytimoney.ie — Page 35 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

			1	1	
Construction Compound (4)	Negligible	1 to 4	No	Negligible	1 to 4
Substation	Low	5 to 10	No	Low	5 to 10
Borrow Pit (1)	Low	5 to 10	No	Low	5 to 10
Borrow Pit (2)	Low	5 to 10	No	Low	5 to 10
Main Spine Road	Medium	11 to 16	No	Low	5 to 10
Site Entrance to Southern Loop	Medium	11 to 16	No	Low	5 to 10
Southern Loop	Medium	11 to 16	No	Low	5 to 10
Spur to T2	Low	5 to 10	No	Negligible	1 to 4
Spur to T17	Negligible	1 to 4	No	Negligible	1 to 4
Spur to T18	Medium	11 to 16	No	Low	5 to 10
T3 to T16	Medium	11 to 16	No	Low	5 to 10
T4 to Substation	Low	5 to 10	No	Low	5 to 10
Spur to T12, T13 & T15	Medium	11 to 16	No	Low	5 to 10
Spur to T20	Low	5 to 10	No	Low	5 to 10
Spur to T14	Low	5 to 10	No	Low	5 to 10
Spur to T11	Low	5 to 10	No	Low	5 to 10
Spur to T7	Medium	11 to 16	No	Low	5 to 10
Spur to T5 & Met. Mast	Medium	11 to 16	No	Low	5 to 10
Spur to T21	Low	5 to 10	No	Low	5 to 10
T6 to T19	Medium	11 to 16	No	Low	5 to 10

P20-312 www.fehilytimoney.ie — Page 36 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

9. INDICTATIVE FOUNDATION TYPE AND FOUNDATION DEPTH FOR TURBINES

9.1 Summary

Based on a review of the ground investigation and walkover information for the Proposed Development site, an assessment of the likely foundation type and founding depths for each turbine location was carried out. A summary of this assessment is provided in Table 9-1.

Table 9-1: Summary of Indicative Turbine Foundation Type and Founding Depths

Turbine No.	Turbine Foundation Type	Relevant GI	Indicative founding depth (m bgl)	Comment
T01	Gravity foundation	Peat probes	4.0m	
T02	Gravity foundation	Peat probes	3.0m	
Т03	Gravity foundation	Peat probes	3.0m	
T04	Gravity foundation	Peat probes	4.5m	
T05	Gravity foundation	Peat probes	4.0m	
Т06	Gravity foundation	Peat probes / TP05	>2.0m	Soft sandy slightly gravelly Silt to 1.9m. Bottom of layer not encountered.
Т07	Gravity foundation	Peat probes	3.5m	
Т08	Gravity foundation	Peat probes / TP09	2.5m	Soft brown Silt to 0.9m overlying probable weathered bedrock.
Т09	Gravity foundation	Peat probes / TP07	3.0m	
T10	Gravity foundation	Peat probes	3.5m	
T11	Gravity foundation	Peat probes	3.0m	
T12	Gravity foundation	Peat probes	4.5m	

P20-312 www.fehilytimoney.ie — Page 37 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Turbine No.	Turbine Foundation Type	Relevant Gl	Indicative founding depth (m bgl)	Comment
T13	Gravity foundation	Peat probes	4.0m	
T14	Gravity foundation	Peat probes	3.5m	
T15	Gravity foundation	Peat probes	3.5m	
T16	Gravity foundation	Peat probes	4.0m	
T17	Gravity foundation	Peat probes	3.5m	
T18	Gravity foundation	Peat probes	4.0m	
T19	Gravity foundation	Peat probes	3.0m	
T20	Gravity foundation	Peat probes	4.0m	
T21	Gravity foundation	Peat probes / TP03	3.0m	Peat to 2.3m underlain by clayey coarse Sand and Gravel with cobbles and boulders.
Met Mast	Gravity foundation	Peat probes	3.0m	

It should be noted that confirmatory ground investigation will be carried out prior to construction at each turbine location, in the form of a borehole with in-situ SPT testing at 1m intervals in the overburden and follow-on rotary core through bedrock, to confirm the foundation types and founding stratums indicated in Table 9-1. It is likely that following the completion of further ground investigation prior to construction that the turbine bases will be deemed suitable for gravity type foundations. Alternatively, piled foundations may be required at certain locations.

For gravity type turbine foundations, where the depth of excavation exceeds the required founding depth for the proposed turbine base, up-fill material consisting of granular fill (6N) shall be used to backfill the excavation to the required founding depth.

For the piled turbine foundations, a typical piling type and configuration could be up to 16 no. 900mm rotary bored piles.

P20-312 www.fehilytimoney.ie — Page 38 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

10. FOUNDING DETAILS FOR INFRASTRUCTURE ELEMENTS (EXCEPT TURBINES)

This section provides a summary of the founding details for various elements of the proposed infrastructure across the Proposed Development site. The detailed methodologies for the construction these elements of the Proposed Development are included in Chapter 4 of the EIAR.

10.1 Access Roads

The access roads on site will be constructed as excavate and replace (founded) type construction, which, given the ground conditions and type of terrain present, is deemed the most appropriate construction approach. Floating road construction will not be undertaken on the Proposed Development.

The total length of new proposed access road to be constructed on site is 9.7km (see Figure 1.1 of the Peat and Spoil Management Plan – Appendix 4-2 of the EIAR).

The proposed make-up of the founded access roads is a minimum stone thickness of 500mm. The requirement for a layer of geotextile and geogrid and the necessary stone thickness will be confirmed at pre-construction stage.

See the Peat & Spoil Management Plan for the Proposed Development for further details on the proposed access roads on site.

10.2 Crane Hardstands

The crane hardstands will be constructed using the founded technique (i.e. not floated) technique

Crane hardstands are constructed using compacted Class 1/6F material on a suitable sub-formation to achieve the required bearing resistance. The hardstands will be designed for the most critical loading combinations from the crane.

The hardstands will require to be founded on competent material underlying the peat deposits. The founding levels for the hardstands will be variable across the site and will be confirmed at pre-construction stage.

The make-up of the hardstands will include a minimum of 1000mm of granular stone fill with a layer of geotextile and/or geogrid, if deemed necessary by the Designer.

10.3 Substation Foundations & Platforms

The substation platform will be constructed using the founded technique (i.e. not floated technique). The substation foundations will comprise strip/raft foundations under the main footprint of the building with a basement/pit for cable connections.

Substation platforms are constructed using compacted Class 1/6F material on a suitable sub-formation to achieve the required bearing resistance.

The substation platform will require to be founded on competent material underlying the peat deposits.

P20-312 www.fehilytimoney.ie — Page 39 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

Given the ground conditions present at the proposed substation, the foundations will require to be founded on firm glacial till or medium dense granular material. The peat will not be a be a suitable founding stratum for the substation foundations. The founding depth for substation platforms is to be 1.5-2.0m.

The make-up of the substation platform will include up to 1000mm of granular stone fill with a layer of geotextile and/or geogrid if deemed necessary by the Designer. At the underside of the substation foundations, a layer of structural up-fill (class 6N) will be required.

10.4 Construction Compound Platforms

The construction compound platforms will be constructed using the founded technique (i.e. not floated technique).

The construction compound platforms are constructed using compacted Class 1/6F material on a suitable subformation to achieve the required bearing resistance.

The construction compound platforms will be founded on material underlying the peat deposits.

Typical founding depth for construction compound platforms will require excavations from 1.0m to 3.0m bgl.

The typical make-up of the construction compound platform will include up to 750mm of granular stone fill with possibly a layer of geotextile and/or geogrid.

10.5 Met Mast Foundations

The met mast foundation will comprise a gravity type foundation.

Given the ground conditions present at the proposed met mast, the foundation will be founded on glacial till, glacial granular material or bedrock.

The founding depth for the met mast foundation is envisaged to be 2.0 to 3.0m bgl. At the underside of the met mast foundation, a layer of structural up-fill (class 6N) will be required.

10.6 Peat Placement Areas

A number of peat storage/remediation locations were reviewed as part of the assessment of the site. These are located within clear fell area around a number of the turbines in the Proposed Development. The placement of peat in these areas will be limited to a maximum of 1m in height, and the stability of these areas is covered under load condition 2 as reported in Section 7 of this report.

Additional discussion of the peat placement areas is provided in the Peat and Spoil Management Plan (FT, 2022) for the Proposed Development.

P20-312 www.fehilytimoney.ie — Page 40 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

11. SUMMARY AND RECOMMENDATIONS

11.1 Summary

The following summary is given.

FT was engaged by MKO to undertake a geotechnical and peat stability assessment of the Proposed Development site.

The findings of the peat assessment showed that the site has a low risk of peat failure and is suitable for the proposed wind farm development. The findings include recommendations and control measures for construction work in peat lands, all of which will be implemented in full to ensure that all works adhere to an acceptable standard of safety.

The site is typically covered in blanket peat with undulating terrain and widespread mature and young forestry.

Peat thicknesses recorded during the site walkovers from 960 probes ranged from 0.2 to 5.7m with an average depth of 2.1m. 53% of the probes recorded peat depths of less than 2.0m, with 83% of peat depth probes recorded peat depths of less than 3.0m. The deeper peat areas were avoided, where possible, when optimising the wind farm layout for site. The average peat depth at any of the proposed turbine locations is 3.0m.

Slope inclinations at the main infrastructure locations range from 2 to 8 degrees.

An analysis of peat sliding was carried out at the main infrastructure locations across the Proposed Development site for both the undrained and drained conditions. The purpose of the analysis was to determine the Factor of Safety (FoS) of the peat slopes.

An undrained analysis was carried out, which applies in the short-term during construction. For the undrained condition, the calculated FoS for load conditions 1 and 2 for the locations analysed, showed that all locations have an acceptable FoS of greater than 1.3, indicating a low risk of peat failure. The undrained analysis is considered the most critical condition for the peat slopes.

A drained analysis was also carried out, which examined the effect of in particular, rainfall on the existing stability of the natural peat slopes on site. For the drained condition, the calculated FoS for load conditions (1) & (2) for the locations analysed, showed that all locations have an acceptable FoS of greater than 1.3.

The peat stability risk assessment at each infrastructure location, along access roads, in peat placement areas and at settlement pond locations identified a number of mitigation/control measures to reduce the potential risk of peat failure. See Appendix B for details of the required mitigation/control measures for each infrastructure element.

In summary, the findings of the peat assessment showed that the Proposed Development has an acceptable margin of safety, is suitable for the proposed wind farm development and is considered to be at **low** risk of peat failure provided appropriate mitigation measures, such as implementing and maintaining an appropriate drainage system are implemented. The findings include recommendations and mitigation/control measures for construction work in peat lands, all of which will be implemented in full to ensure that all works adhere to an acceptable standard of safety.

P20-312 www.fehilytimoney.ie — Page 41 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

11.2 Recommendations

The following recommendations are given, all of which will be implemented in full.

Notwithstanding that the Proposed Development site has a low risk of peat failure a number of mitigation/control measures are prescribed to ensure that all works adhere to an acceptable standard of safety for work in peatlands. Mitigation/control measures identified for each of the infrastructure elements in the risk assessment will be implemented throughout design and construction works (Appendix B).

The proposed construction method for all the new proposed access roads at the wind farm is excavate and replace type construction.

The measures prescribed given in FT's report 'Peat & Spoil Management Plan - Sheskin South Wind Farm, County Mayo' (FT, 2022) will be implemented in full during the design and construction stage of the wind farm development.

To minimise the risk of construction activity causing potential peat instability the Construction Method Statements (CMSs) for the project will implement in full, but not be limited to, the recommendations above. This will ensure that best practice guidance regarding the management of peat stability will be inherent in the construction phase.

P20-312 www.fehilytimoney.ie — Page 42 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

12. REFERENCES

Applied Ground Engineering Consultants (AGEC) (2004). Derrybrien Wind Farm Final Report on Landslide of October 2003.

British Standards Institute (1981). BS 6031:1981 Code of practice for earthworks.

Bromhead, E.N. (1986). The Stability of Slopes.

Carling, P.A. (1986). Peat slides in Teesdale and Weardale, northern Pennines, July 1983: Description and failure mechanisms. Earth Surface Processes and Landforms, 11.

Clayton, C.R.I. (2001). Managing Geotechnical Risk. Institution of Civil Engineers, London.

Den Haan EJ and Grognet M (2014). A large direct simple shear device for the testing of peat at low stresses. Géotechnique Letters 4(4): 283–288, http://dx.doi.org/10.1680/geolett. 14.00033.

Dykes, A.P. and Kirk, K.J. (2006). Slope instability and mass movements in peat deposits. In Martini, I.P., Martinez Cortizas, A. and Chesworth, W. (Eds.) Peatlands: Evolution and Records of Environmental and Climatic Changes. Elsevier, Amsterdam.

Farrell, E.R. & Hebib, S. (1998). The determination of the geotechnical parameters of organic soils. Proceedings of International Symposium on problematic soils, IS-TOHOKU 98, Sendai, Japan.

Geological Survey of Ireland (1992). Sheet 6 Geology of North Mayo.

Geological Survey of Ireland (2006). Landslides in Ireland. Geological Survey of Ireland -Irish Landslides Group. July 2006.

Geological Survey of Ireland (2022). Online dataset public viewer, June 2022.

Hanrahan, E.T., Dunne, J.M. and Sodha, V.G. (1967). Shear strength of peat. Proc. Geot. Conf., Oslo, Vol. 1.

Hendrick, E. (1990). A Bog Flow at Bellacorrick Forest, Co. Mayo. Irish Forestry, Volume 47 (1): pp 32-44.

Hendry MT, Sharma JS, Martin CD and Barbour SL (2012). Effect of fibre content and structure on anisotropic elastic stiffness and shear strength of peat. Canadian Geotechnical Journal 49(4): 403–415, http://dx.doi.org/10.1139/t2012-003.

Hungr, O. and Evans, S.G. (1985). An example of a peat flow near Prince Rupert, British Columbia. Canadian Geotechnical Journal, 22.

Komatsu J, Oikawa H, Tsushima M and Igarashi M (2011). Ring shear test on peat. In Proceedings of the 21st International Offshore and Polar Engineering Conference, Maui, Hawaii, USA (Chung JS, Hong SY, Langen I and Prinsenberg SJ (eds)). International Society of Offshore and Polar Engineers, Cupertino, CA, USA, vol. 2, pp. 393–396.

Landva, A.O. (1980). Vane testing in peat. Canadian Geotechnical Journal, 17(1).

MacCulloch, F. (2005). Guidelines for the Risk Management of Peat Slips on the Construction of Low Volume/Low Cost Roads over Peat. RoadEx 11 Northern Periphery.

P20-312 www.fehilytimoney.ie — Page 43 of 44

PROJECT NAME: SHESKIN SOUTH WIND FARM

REPORT: GEOTECHNICAL & PEAT STABILITY ASSESSMENT

McGeever J. and Farrell E. (1988). The shear strength of an organic silt. Proc. 2nd Baltic Conf., 1, Tallin USSR.

O'Kelly BC and Zhang L (2013). Consolidated-drained triaxial compression testing of peat. Geotechnical Testing Journal 36(3): 310–321, http://dx.doi.org/10.1520/GTJ20120053.

PLHRAG (2017). Peat Landslide Hazard and Risk Assessments: Best Practice Guide for Proposed Electricity Generation Developments. Prepared for Energy Consents Unit Scottish Government, 2nd Edition. Dated April 2017.

Skempton, A. W. and DeLory, F. A. (1957). Stability of natural slopes in London Clay. Proc 4th Int. Conf. On Soil Mechanics and Foundation Engineering, Rotterdam, vol. 2, pp.72-78.

Warburton, J., Higgett, D. and Mills, A. (2003). Anatomy of a Pennine Peat Slide. Earth Surface Processes and Landforms.

Warburton, J., Holden, J. and Mills, A. J. (2003). Hydrological controls of surficial mass movements in peat. Earth-Science Reviews 67 (2004), pp. 139-156.

Zwanenburg C, Den Haan EJ, Kruse GAM and Koelewijn AR (2012). Failure of a trial embankment on peat in Booneschans, the Netherlands. Géotechnique 62(6): 479–490, http://dx.doi.org/10.1680/geot.9.P.094.

P20-312 www.fehilytimoney.ie — Page 44 of 44

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX A

Photos from Site Walkover



Photo 1: Existing access track through site

Photo 2: Existing access track along gas pipeline wayleave

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX B

Peat Stability Risk Registers

Location:	Turbi	Turbine 11					
Grid Reference (Eastings, Northings):	493540	824053					
Distance to Watercourse (m)	ercourse (m) 100 - 15						
Min & Max Measured Peat Depth (m):	2.7	- 3.0					
Control Required:	No						

		Pre-Control Measure Implementation					Post-Control Measure Implementati			nplementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.39 (u), 2.55 (d)	1	2	2	Negligible	No		1	2	2	Negligible
2	Evidence of sub peat water flow	1	2	2	Negligible	No		1	2	2	Negligible
3	Evidence of surface water flow	2	2	4	Negligible	No		1	2	2	Negligible
4	Evidence of previous failures/slips	3	2	6	Low	No		2	2	4	Negligible
5	Type of vegetation	2	2	4	Negligible	No		2	2	4	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	2	4	Negligible	No	See Below	2	2	4	Negligible
7	Evidence of very soft/soft clay at base of peat	0	2	0	Not Applicable	No	1	0	2	0	Not Applicable
8	Evidence of mechanically cut peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	2	0	Not Applicable	No		2	2	4	Negligible
10	Evidence of bog pools	0	2	0	Not Applicable	No		0	2	0	Not Applicable
11	Relatively deep peat	3	2	6	Low	No		2	2	4	Negligible

	Control Measures to be Implemented Prior to/and During Construction for Turbine T1
i ii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbi	Turbine T2			
Grid Reference (Eastings, Northings):	492485	824313			
Distance to Watercourse (m)	> 1	150			
Min & Max Measured Peat Depth (m):	1.2	1.2 - 2.0			
Control Required:	N	No			

		Pre-Control Measure Implementation					Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 3.19 (u), 3.83 (d)	1	1	1	Negligible	No		1	1	1	Negligible
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible
3	Evidence of surface water flow	2	1	2	Negligible	No		2	1	2	Negligible
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	2	1	2	Negligible
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable
11	Other	0	1	0	Not Applicable	No		0	1	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T2
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbine T3				
Grid Reference (Eastings, Northings):	493171 825360				
Distance to Watercourse (m)	50 - 100				
Min & Max Measured Peat Depth (m):	1.0 - 1.6				
Control Required:	No				

		Pre-Control Measure Implementation					Post-Control Measure Implementati				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.21 (u), 2.88 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Other	0	3	0	Not Applicable	No		0	3	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T3
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbine T4
Grid Reference (Eastings, Northings):	493318 824925
Distance to Watercourse (m)	50 - 100
Min & Max Measured Peat Depth (m):	2.7 - 3.4
Control Paguired:	No

		Pre-Control Measure Implementation				Post-Control Measure Im				plementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 3.26 (u), 3.37 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No	1	0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low

	Control Measures to be Implemented Prior to/and During Construction for Turbine T4
i ii iii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbi	Turbine 15					
Grid Reference (Eastings, Northings):	492715	826139					
Distance to Watercourse (m)	50 - 100						
Min & Max Measured Peat Depth (m):	2.4	- 2.8					
Control Required:	No						

		Pre-Control Measure Implementation					Post	-Control M	leasure Im	plementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.52 (u), 1.65 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No		2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	3	3	9	Low	No		2	3	6	Low
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low

	Control Measures to be Implemented Prior to/and During Construction for Turbine T5	
i ii iii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.	

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location: Turbine T					
Grid Reference (Eastings, Northings):	493000	825784			
Distance to Watercourse (m)	50 -	100			
Min & Max Measured Peat Depth (m):	0.7	- 1.2			
Control Required:	N	lo			

		Pre-Control Measure Implementation					Post	t-Control M	leasure Im	nplementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.62 (u), 3.84 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No		2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No	1	0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Other	0	3	0	Not Applicable	No		0	3	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T6
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location: Turbine T						
Grid Reference (Eastings, Northings):	493158 826709					
Distance to Watercourse (m)	> 150					
Min & Max Measured Peat Depth (m):	1.8 - 2.3					
Control Required:	No					

		Pre-Control Measure Implementation					Post-Control Measure Im				nplementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.75 (u), 2.00 (d)	1	1	1	Negligible	No		1	1	1	Negligible
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible
3	Evidence of surface water flow	2	1	2	Negligible	No		2	1	2	Negligible
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	2	1	2	Negligible
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable
11	Other	0	1	0	Not Applicable	No		0	1	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T7
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbi	Turbine T8			
Grid Reference (Eastings, Northings):	493355	827503			
Distance to Watercourse (m)	> 1	150			
Min & Max Measured Peat Depth (m):	1.2	- 1.7			
Control Required:	N	No			

		Pre-Control Measure Implementation			Post-Control Mea			leasure In	easure Implementation		
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.78 (u), 2.26 (d)	1	1	1	Negligible	No		1	1	1	Negligible
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible
3	Evidence of surface water flow	2	1	2	Negligible	No		2	1	2	Negligible
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	2	1	2	Negligible
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable
11	Other	0	1	0	Not Applicable	No		0	1	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T8
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbi	Turbine T9			
Grid Reference (Eastings, Northings):	493535	826354			
Distance to Watercourse (m)	> 1	50			
Min & Max Measured Peat Depth (m):	0.9	0.9 - 1.1			
Control Required:	N	No			

		Pre-Control Measure Implementation			Post-Control Measu			leasure In	sure Implementation		
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.29 (u), 3.50 (d)	1	1	1	Negligible	No		1	1	1	Negligible
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible
3	Evidence of surface water flow	2	1	2	Negligible	No		2	1	2	Negligible
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	2	1	2	Negligible
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable
11	Other	0	1	0	Not Applicable	No		0	1	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T9
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbii	Turbine 110				
Grid Reference (Eastings, Northings):	493830	824773				
Distance to Watercourse (m)	100	- 150				

Min & Max Measured Peat Depth (m): 2.0 - 2.5 Control Required: No

		Pre-Control Measure Implementation				Post-Control Measure Impleme				nplementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.05 (u), 2.30 (d)	1	2	2	Negligible	No		1	2	2	Negligible
2	Evidence of sub peat water flow	1	2	2	Negligible	No		1	2	2	Negligible
3	Evidence of surface water flow	2	2	4	Negligible	No		2	2	4	Negligible
4	Evidence of previous failures/slips	3	2	6	Low	No		2	2	4	Negligible
5	Type of vegetation	2	2	4	Negligible	No		2	2	4	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	2	4	Negligible	No	See Below	2	2	4	Negligible
7	Evidence of very soft/soft clay at base of peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
8	Evidence of mechanically cut peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
10	Evidence of bog pools	0	2	0	Not Applicable	No		0	2	0	Not Applicable
11	Relatively deep peat	3	2	6	Low	No		2	2	4	Negligible

	Control Measures to be Implemented Prior to/and During Construction for Turbine T10
i ii iii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to determine peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbine T11
Grid Reference (Eastings, Northings):	493662 827239
Distance to Watercourse (m)	50 - 100
Min & Max Measured Peat Depth (m):	0.9 - 1.8
Control Boquirod:	No

		Pre-Control Measure Implementation				Post-Control Measure Implementation					
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.57 (u), 3.19 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		2	3	6	Low
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Other	0	3	0	Not Applicable	No		0	3	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T11
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbine T12

494692 828350 Grid Reference (Eastings, Northings): Distance to Watercourse (m) > 150 2.1 - 3.6 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-Control Measure Implementation					Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.56 (u), 1.60 (d)	1	1	1	Negligible	No		1	1	1	Negligible
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible
3	Evidence of surface water flow	2	1	2	Negligible	No		2	1	2	Negligible
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	2	1	2	Negligible
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
9	Evidence of quaking or buoyant peat	3	1	3	Negligible	No		2	1	2	Negligible
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable
11	Relatively deep peat	3	1	3	Negligible	No		2	1	2	Negligible

	Control Measures to be Implemented Prior to/and During Construction for Turbine T12
i ii iii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbine T13

494085 827802 Grid Reference (Eastings, Northings): Distance to Watercourse (m) 100 - 150 Min & Max Measured Peat Depth (m): 1.8 - 2.8 Control Required: No

		Pre-	Control Mea	sure Impl	ementation			Post-Control Measure Implementati			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.52 (u), 2.73 (d)	1	2	2	Negligible	No		1	2	2	Negligible
2	Evidence of sub peat water flow	1	2	2	Negligible	No		1	2	2	Negligible
3	Evidence of surface water flow	2	2	4	Negligible	No		2	2	4	Negligible
4	Evidence of previous failures/slips	3	2	6	Low	No		2	2	4	Negligible
5	Type of vegetation	2	2	4	Negligible	No		2	2	4	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	2	4	Negligible	No	See Below	2	2	4	Negligible
7	Evidence of very soft/soft clay at base of peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
8	Evidence of mechanically cut peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
10	Evidence of bog pools	0	2	0	Not Applicable	No		0	2	0	Not Applicable
11	Relatively deep peat	3	2	6	Low	No		2	2	4	Negligible

	Control Measures to be Implemented Prior to/and During Construction for Turbine T13
i ii iii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

No

Location:	Turbine T14
Grid Reference (Eastings, Northings):	494563 827383
Distance to Watercourse (m)	> 150
Min & Max Measured Peat Depth (m):	1.8 - 2.5

Control Required:

		Pre-	Control Mea	sure Impl	ementation			Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 2.73 (u), 3.06 (d)	1	1	1	Negligible	No		1	1	1	Negligible	
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible	
3	Evidence of surface water flow	2	1	2	Negligible	No	1	2	1	2	Negligible	
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible	
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible	
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	2	1	2	Negligible	
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable	
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No	1	0	1	0	Not Applicable	
9	Evidence of quaking or buoyant peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable	
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable	
11	Relatively deep peat	3	1	3	Negligible	No		2	1	2	Negligible	

	Control Measures to be Implemented Prior to/and During Construction for Turbine T14
i ii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbine T15

494849 827929 Grid Reference (Eastings, Northings): Distance to Watercourse (m) 50 - 100 1.8 - 2.6 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-Control Measure Implementation					Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.00 (u), 2.21 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No		2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low

	Control Measures to be Implemented Prior to/and During Construction for Turbine T15
i ii iii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

No

Location:	Turbir	Turbine T16				
Grid Reference (Eastings, Northings):	493115	824241				
Distance to Watercourse (m)	100	- 150				
Min & Max Measured Peat Depth (m):	2.2	- 2.7				

Control Required:

		Pre-	Control Mea	sure Impl	ementation			Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 3.87 (u), 4.25 (d)	1	2	2	Negligible	No		1	2	2	Negligible	
2	Evidence of sub peat water flow	1	2	2	Negligible	No		1	2	2	Negligible	
3	Evidence of surface water flow	2	2	4	Negligible	No		2	2	4	Negligible	
4	Evidence of previous failures/slips	3	2	6	Low	No		2	2	4	Negligible	
5	Type of vegetation	2	2	4	Negligible	No		2	2	4	Negligible	
6	General slope characteristics upslope/downslope from infrastructure location	2	2	4	Negligible	No	See Below	2	2	4	Negligible	
7	Evidence of very soft/soft clay at base of peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable	
8	Evidence of mechanically cut peat	0	2	0	Not Applicable	No	1	0	2	0	Not Applicable	
9	Evidence of quaking or buoyant peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable	
10	Evidence of bog pools	0	2	0	Not Applicable	No		0	2	0	Not Applicable	
11	Relatively deep peat	3	2	6	Low	No		2	2	4	Negligible	

	Control Measures to be Implemented Prior to/and During Construction for Turbine T16
i ii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbir	Turbine T17			
Grid Reference (Eastings, Northings):	492367	823822			
Distance to Watercourse (m)	> 1	> 150			
Min & Max Measured Peat Depth (m):	2.0	2.0 - 2.4			
Control Required:	N	No			

		Pre-Control Measure Implementation					Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.81 (u), 3.19 (d)	1	1	1	Negligible	No		1	1	1	Negligible
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible
3	Evidence of surface water flow	2	1	2	Negligible	No	1	2	1	2	Negligible
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	2	1	2	Negligible
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable
11	Other	0	1	0	Not Applicable	No		0	1	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T17
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbii	Turbine 118			
Grid Reference (Eastings, Northings):	492870	823674			
Distance to Watercourse (m)	50 -	50 - 100			

Min & Max Measured Peat Depth (m): 2.5 - 3.0 Control Required: No

		Pre-Control Measure Implementation					Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.39 (u), 2.55 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low

	Control Measures to be Implemented Prior to/and During Construction for Turbine T18
i ii iiv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbir	Turbine T19			
Grid Reference (Eastings, Northings):	493729	825893			
Distance to Watercourse (m)	> 1	50			
Min & Max Measured Peat Depth (m):	1.3	1.3 - 1.8			
Control Required:	N	No			

		Pre-Control Measure Implementation					Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.06 (u), 2.56 (d)	1	1	1	Negligible	No		1	1	1	Negligible
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible
3	Evidence of surface water flow	2	1	2	Negligible	No	1	2	1	2	Negligible
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	2	1	2	Negligible
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No	1	0	1	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable
11	Other	0	1	0	Not Applicable	No		0	1	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T19
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

No

Location:	Turbii	Turbine T20				
Grid Reference (Eastings, Northings):	494797	826713				
Distance to Watercourse (m)	50 -	50 - 100				
Min & Max Measured Peat Depth (m):	2.0	2.0 - 2.9				

Control Required:

		Pre-Control Measure Implementation					Post	t-Control M	leasure Im	plementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.48 (u), 1.59 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No	1	1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No	1	0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low

	Control Measures to be Implemented Prior to/and During Construction for Turbine T20
i ii iii iv v	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Turbine 121
Grid Reference (Eastings, Northings):	493929 825398
Distance to Watercourse (m)	50 - 100
Min & Max Measured Peat Depth (m):	0.3 - 1.4
Control Required:	No

		Pre-Control Measure Implementation				Post-Control Measure Impleme			plementation		
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.99 (u), 4.11 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Other	0	3	0	Not Applicable	No		0	3	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Turbine T21
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- Note
 (1) FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 (2) Probability assessed as per Table A and B of Appendix E.
 (3) Impact based on distance of infrastructure element to nearest watercourse.

Location:	Met. Mast

492700 825934 Grid Reference (Eastings, Northings): Distance to Watercourse (m) 50 - 100 Min & Max Measured Peat Depth (m): 0.7 - 1.9 Control Required: No

		Pre-Control Measure Implementation					Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.48 (u), 3.03 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No	1	1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	3	3	9	Low	No		2	3	6	Low
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Other	0	3	0	Not Applicable	No		0	3	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Met. Mast
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.
	l

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Const. Comp. (1)
Location:	Const. Comp. (1)

494058 824104 Grid Reference (Eastings, Northings): Distance to Watercourse (m) 50 - 100 Min & Max Measured Peat Depth (m): 1.9 - 3.0 Control Required: No

		Pre-	Pre-Control Measure Implementation					Post	Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 2.39 (u), 2.55 (d)	1	3	3	Negligible	No		1	3	3	Negligible	
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible	
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low	
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low	
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low	
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low	
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low	

	Control Measures to be Implemented Prior to/and During Construction for Construction Compound (1)
i	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle
	- temporary works designer may be required to provide excavation support design
	-daily detailed inspection of excavation faces
	-potential for greater water inflow into excavation requiring removal of water using pumping
	-increased exclusion zone around excavation to avoid accidental loading of crest of slope
ii	Maintain hydrology of area as far as possible;
iii	Use of experienced geotechnical staff for site investigation;
iv	Use of experienced contractors and trained operators to carry out the work;
٧	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.
	<u> </u>

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Const. Comp. (2)

493275 826243 Grid Reference (Eastings, Northings): 100 - 150 Distance to Watercourse (m) Min & Max Measured Peat Depth (m): 0.6 - 1.8 Control Required: No

		Pre-	Pre-Control Measure Implementation					Post	Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 2.66 (u), 3.38 (d)	1	2	2	Negligible	No		1	2	2	Negligible	
2	Evidence of sub peat water flow	1	2	2	Negligible	No		1	2	2	Negligible	
3	Evidence of surface water flow	2	2	4	Negligible	No		2	2	4	Negligible	
4	Evidence of previous failures/slips	3	2	6	Low	No		2	2	4	Negligible	
5	Type of vegetation	2	2	4	Negligible	No		2	2	4	Negligible	
6	General slope characteristics upslope/downslope from infrastructure location	2	2	4	Negligible	No	See Below	2	2	4	Negligible	
7	Evidence of very soft/soft clay at base of peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable	
8	Evidence of mechanically cut peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable	
9	Evidence of quaking or buoyant peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable	
10	Evidence of bog pools	0	2	0	Not Applicable	No		0	2	0	Not Applicable	
11	Other	0	2	0	Not Applicable	No		0	2	0	Not Applicable	

	Control Measures to be Implemented Prior to/and During Construction for Construction Compound (2)
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Const. Comp. (3)

493790 827608 Grid Reference (Eastings, Northings): Distance to Watercourse (m) 100 - 150 Min & Max Measured Peat Depth (m): 0.6 - 1.8 Control Required: No

		Pre-Control Measure Implementation					Post	Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.57 (u), 3.19 (d)	1	2	2	Negligible	No		1	2	2	Negligible
2	Evidence of sub peat water flow	1	2	2	Negligible	No		1	2	2	Negligible
3	Evidence of surface water flow	2	2	4	Negligible	No		2	2	4	Negligible
4	Evidence of previous failures/slips	3	2	6	Low	No		2	2	4	Negligible
5	Type of vegetation	2	2	4	Negligible	No		2	2	4	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	2	4	Negligible	No	See Below	2	2	4	Negligible
7	Evidence of very soft/soft clay at base of peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
8	Evidence of mechanically cut peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
10	Evidence of bog pools	0	2	0	Not Applicable	No		0	2	0	Not Applicable
11	Other	0	2	0	Not Applicable	No		0	2	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Construction Compound (3)								
i	Maintain hydrology of area as far as possible;								
ii	Use of experienced geotechnical staff for site investigation;								
iii	Use of experienced contractors and trained operators to carry out the work;								
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.								

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

495340 826865 Grid Reference (Eastings, Northings): Distance to Watercourse (m) > 150 Min & Max Measured Peat Depth (m): 0.4 - 1.3 Control Required: No

		Pre-	Pre-Control Measure Implementation					Post	Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 2.50 (u), 3.54 (d)	1	1	1	Negligible	No		1	1	1	Negligible	
2	Evidence of sub peat water flow	1	1	1	Negligible	No		1	1	1	Negligible	
3	Evidence of surface water flow	2	1	2	Negligible	No	1	1	1	1	Negligible	
4	Evidence of previous failures/slips	3	1	3	Negligible	No		2	1	2	Negligible	
5	Type of vegetation	2	1	2	Negligible	No		2	1	2	Negligible	
6	General slope characteristics upslope/downslope from infrastructure location	2	1	2	Negligible	No	See Below	1	1	1	Negligible	
7	Evidence of very soft/soft clay at base of peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable	
8	Evidence of mechanically cut peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable	
9	Evidence of quaking or buoyant peat	0	1	0	Not Applicable	No		0	1	0	Not Applicable	
10	Evidence of bog pools	0	1	0	Not Applicable	No		0	1	0	Not Applicable	
11	Other	0	1	0	Not Applicable	No		0	1	0	Not Applicable	

	Control Measures to be Implemented Prior to/and During Construction for Construction Compound (4)
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Substation
-----------	------------

494111 824433 Grid Reference (Eastings, Northings): Distance to Watercourse (m) 50 - 100 Min & Max Measured Peat Depth (m): 1.3 - 3.3 Control Required: No

		Pre-	Pre-Control Measure Implementation				Post	Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 2.22 (u), 2.32 (d)	1	3	3	Negligible	No		1	3	3	Negligible	
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible	
3	Evidence of surface water flow	2	3	6	Low	No		2	3	6	Low	
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low	
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low	
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low	
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low	

	Control Measures to be Implemented Prior to/and During Construction for Substation
	Control Measures to be imperiented into total a buning constitution to causatation
i	Due to relatively deep peat at this turbine location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle
	- temporary works designer may be required to provide excavation support design
	-daily detailed inspection of excavation faces
	-potential for greater water inflow into excavation requiring removal of water using pumping
	-increased exclusion zone around excavation to avoid accidental loading of crest of slope
ii	Maintain hydrology of area as far as possible;
iii	Use of experienced geotechnical staff for site investigation;
iv	Use of experienced contractors and trained operators to carry out the work;
٧	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

493341 826777 Grid Reference (Eastings, Northings): 50 - 100 Distance to Watercourse (m) Min & Max Measured Peat Depth (m): 0.9 Control Required: No

		Pre-	Control Mea	sure Impl	ementation			Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	
1	FOS = 3.03 (u), 5.12 (d)	1	3	3	Negligible	No		1	3	3	Negligible	
2	Evidence of sub peat water flow	1	3	3	Negligible	No	1	1	3	3	Negligible	
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low	
4	Evidence of previous failures/slips	3	3	9	Low	No	1	2	3	6	Low	
5	Type of vegetation	2	3	6	Low	No	1	2	3	6	Low	
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low	
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No	1	0	3	0	Not Applicable	
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable	
11	Other	0	3	0	Not Applicable	No		0	3	0	Not Applicable	

	Control Measures to be Implemented Prior to/and During Construction for Borrow Pit (1)
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Borrow Pit (2)

493436 826478 Grid Reference (Eastings, Northings): Distance to Watercourse (m) > 150 Min & Max Measured Peat Depth (m): 1.6 Control Required: No

		Pre-	Pre-Control Measure Implementation				Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.76 (u), 3.59 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No		2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Other	0	3	0	Not Applicable	No		0	3	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction forBorrow Pit (2)
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix E.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Main Spine Road

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 0.2 - 4.0 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Pre-Control Measure Implementation					Post	Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating		
1	FOS = 1.78 (u), 1.87 (d)	1	4	4	Negligible	No		1	4	4	Negligible		
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible		
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low		
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low		
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low		
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low		
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable		
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable		
9	Evidence of quaking or buoyant peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable		
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable		
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low		

	Control Measures to be Implemented Prior to/and During Construction for Main Spine Road
i ii iii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location: Site Entrance to Southern Loop

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 0.8 - 4.7 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Pre-Control Measure Implementation				Post-Control Measure Imple			plementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.68 (u), 1.63 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No	1	2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior to/and During Construction forSite Entrance to Southern Loop
i ii iii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Southern Loop
-----------	---------------

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 0.8 - 4.5 Min & Max Measured Peat Depth (m): Control Required: No

	Pre-Control Measure Implementation				Post-Control Measure Impl					plementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.56 (u), 1.60 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior to/and During Construction for Southern Loop
i	Due to relatively deep peat at this location, additional construction measures such as the following will be required:
	- excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle
	- temporary works designer may be required to provide excavation support design
	-daily detailed inspection of excavation faces
	-potential for greater water inflow into excavation requiring removal of water using pumping
	-increased exclusion zone around excavation to avoid accidental loading of crest of slope
ii	Maintain hydrology of area as far as possible;
iii	Use of experienced geotechnical staff for site investigation;
iv	Use of experienced contractors and trained operators to carry out the work;
٧	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T2

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) 100 - 150 Min & Max Measured Peat Depth (m): 2.0 - 3.0 Control Required: No

		Pre-Control Measure Implementation			Post-Control Measure Implement					plementation	
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.81 (u), 3.19 (d)	1	2	2	Negligible	No		1	2	2	Negligible
2	Evidence of sub peat water flow	1	2	2	Negligible	No		1	2	2	Negligible
3	Evidence of surface water flow	2	2	4	Negligible	No		2	2	4	Negligible
4	Evidence of previous failures/slips	3	2	6	Low	No		2	2	4	Negligible
5	Type of vegetation	2	2	4	Negligible	No		2	2	4	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	2	4	Negligible	No	See Below	2	2	4	Negligible
7	Evidence of very soft/soft clay at base of peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
8	Evidence of mechanically cut peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
10	Evidence of bog pools	0	2	0	Not Applicable	No		0	2	0	Not Applicable
11	Relatively deep peat	3	2	6	Low	No		2	2	4	Negligible

	Control Measures to be Implemented Prior to/and During Construction forSpur to T2
i ii iii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T17

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) 100 - 150 1.9 - 2.4 Min & Max Measured Peat Depth (m): Control Required: No

	Pre-Control Measure Implementation			Post-Control Measure Implen					plementation		
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.81 (u), 3.19 (d)	1	2	2	Negligible	No		1	2	2	Negligible
2	Evidence of sub peat water flow	1	2	2	Negligible	No	1	1	2	2	Negligible
3	Evidence of surface water flow	2	2	4	Negligible	No	1	2	2	4	Negligible
4	Evidence of previous failures/slips	3	2	6	Low	No		2	2	4	Negligible
5	Type of vegetation	2	2	4	Negligible	No		2	2	4	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	2	4	Negligible	No	See Below	2	2	4	Negligible
7	Evidence of very soft/soft clay at base of peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
8	Evidence of mechanically cut peat	0	2	0	Not Applicable	No	1	0	2	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	2	0	Not Applicable	No		0	2	0	Not Applicable
10	Evidence of bog pools	0	2	0	Not Applicable	No		0	2	0	Not Applicable
11	Other	0	2	0	Not Applicable	No		0	2	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Spur to T17				
- ;	Maintain hydrology of area as far as possible;				
ii	Use of experienced geotechnical staff for site investigation;				
l "	Use of experienced contractors and trained operators to carry out the work;				
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.				
	Detailed ground investigation to continui peat, mineral soil and bedrock condition and properties.				

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T18

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 2.0 - 3.0 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-Control Measure Implementation			Post-Control Measure In			nplementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.39 (u), 2.55 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No	1	2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No	1	2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No	1	0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior to/and During Construction for Spur to T18
i ii iii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	T3 to T16

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 1.6 - 4.0 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Pre-Control Measure Implementation					Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.38 (u), 1.50 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No	1	2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior to/and During Construction for T3 to T16
i	Due to relatively deep peat at this location, additional construction measures such as the following will be required:
	 excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle temporary works designer may be required to provide excavation support design
	-daily detailed inspection of excavation faces
	-potential for greater water inflow into excavation requiring removal of water using pumping
ii	-increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible;
iii	Use of experienced geotechnical staff for site investigation;
iv	Use of experienced contractors and trained operators to carry out the work;
V	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) 50 - 100 Min & Max Measured Peat Depth (m): 1.5 - 4.1 Control Required: No

		Pre-	Pre-Control Measure Implementation					Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.53 (u), 1.55 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No	1	2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low

i Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope ii Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; iv Use of experienced contractors and trained operators to carry out the work; V Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.		
 excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle temporary works designer may be required to provide excavation support design daily detailed inspection of excavation faces potential for greater water inflow into excavation requiring removal of water using pumping increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; 		Control Measures to be Implemented Prior to/and During Construction for T4 to Substation
	iii iv	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work;

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T12, T13 & T15

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 0.8 - 4.6 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Pre-Control Measure Implementation					Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.18 (u), 1.31 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No	1	0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	3	4	12	Medium	No		2	4	8	Low
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior to/and During Construction forSpur to T12, T13 & T15
i ii iii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T20

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) 50 - 100 0.8 - 2.9 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Pre-Control Measure Implementation					Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.21 (u), 1.45 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No		1	3	3	Negligible
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		1	3	3	Negligible
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	1	3	3	Negligible
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low

	Control Measures to be Implemented Prior to/and During Construction for Spur to T20
i ii iii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T14

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) > 150 1.6 - 3.5 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-Control Measure Implementation					Post-Control Measure Implementation				
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.80 (u), 1.92 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No		2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Relatively deep peat	3	3	9	Low	No		2	3	6	Low

	Control Measures to be Implemented Prior to/and During Construction for Spur to T14
i ii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T11

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) 50 - 100 Min & Max Measured Peat Depth (m): 0.8 - 1.9 Control Required: No

		Pre-	Control Mea	sure Impl	ementation			Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.99 (u), 2.42 (d)	1	3	3	Negligible	No		1	3	3	Negligible
2	Evidence of sub peat water flow	1	3	3	Negligible	No		1	3	3	Negligible
3	Evidence of surface water flow	2	3	6	Low	No		2	3	6	Low
4	Evidence of previous failures/slips	3	3	9	Low	No		2	3	6	Low
5	Type of vegetation	2	3	6	Low	No		2	3	6	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	3	6	Low	No	See Below	2	3	6	Low
7	Evidence of very soft/soft clay at base of peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
8	Evidence of mechanically cut peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	3	0	Not Applicable	No		0	3	0	Not Applicable
10	Evidence of bog pools	0	3	0	Not Applicable	No		0	3	0	Not Applicable
11	Other	0	3	0	Not Applicable	No		0	3	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Spur to T11
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T7

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 1.6 - 2.7 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Pre-Control Measure Implementation					Post-Control Measure Implementation			
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.42 (u), 1.55 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

	1
	Control Measures to be Implemented Prior to/and During Construction for Spur to T7
i ii iii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T5 & Met. Mast

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 0.5 - 2.8 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Control Mea	sure Impl	ementation			Post	-Control M	leasure Im	nplementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.18 (u), 1.32 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	3	4	12	Medium	No		2	4	8	Low
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

i Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope ii Maintain hydrology of area as far as possible; iii Use of experienced geotechnical staff for site investigation; iv Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.		
 excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle temporary works designer may be required to provide excavation support design daily detailed inspection of excavation faces potential for greater water inflow into excavation requiring removal of water using pumping increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; 		Control Measures to be Implemented Prior to/and During Construction for Spur to T5 & Met. Mast
	iii iv	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work;

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	Spur to T21

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 0.4 - 1.4 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Control Mea	sure Impl	ementation			Post	t-Control M	leasure Im	nplementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 2.99 (u), 4.11 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No		2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Other	0	4	0	Not Applicable	No		0	4	0	Not Applicable

	Control Measures to be Implemented Prior to/and During Construction for Spur to T21
i	Maintain hydrology of area as far as possible;
ii	Use of experienced geotechnical staff for site investigation;
iii	Use of experienced contractors and trained operators to carry out the work;
iv	Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

Location:	T6 to T19

Grid Reference (Eastings, Northings): Varies Distance to Watercourse (m) < 50 0.5 - 3.1 Min & Max Measured Peat Depth (m): Control Required: No

		Pre-	Control Mea	sure Impl	ementation			Post	t-Control M	leasure Im	plementation
Ref.	Contributory/Qualitative Factors to Potential Peat Failure	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating	Control Required	Control measures to be implemented during construction	Prob (Note 2)	Impact (Note 3)	Risk	Risk Rating
1	FOS = 1.87 (u), 2.33 (d)	1	4	4	Negligible	No		1	4	4	Negligible
2	Evidence of sub peat water flow	1	4	4	Negligible	No		1	4	4	Negligible
3	Evidence of surface water flow	2	4	8	Low	No	1	2	4	8	Low
4	Evidence of previous failures/slips	3	4	12	Medium	No		2	4	8	Low
5	Type of vegetation	2	4	8	Low	No		2	4	8	Low
6	General slope characteristics upslope/downslope from infrastructure location	2	4	8	Low	No	See Below	2	4	8	Low
7	Evidence of very soft/soft clay at base of peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
8	Evidence of mechanically cut peat	0	4	0	Not Applicable	No	1	0	4	0	Not Applicable
9	Evidence of quaking or buoyant peat	0	4	0	Not Applicable	No		0	4	0	Not Applicable
10	Evidence of bog pools	0	4	0	Not Applicable	No		0	4	0	Not Applicable
11	Relatively deep peat	3	4	12	Medium	No		2	4	8	Low

	Control Measures to be Implemented Prior to/and During Construction for T6 to T19
i ii iii iv v	Due to relatively deep peat at this location, additional construction measures such as the following will be required: - excavation side walls to be supported (e.g. boulders, sheet piles) or excavation face battered to a shallow angle - temporary works designer may be required to provide excavation support design -daily detailed inspection of excavation faces -potential for greater water inflow into excavation requiring removal of water using pumping -increased exclusion zone around excavation to avoid accidental loading of crest of slope Maintain hydrology of area as far as possible; Use of experienced geotechnical staff for site investigation; Use of experienced contractors and trained operators to carry out the work; Detailed ground investigation to confirm peat, mineral soil and bedrock condition and properties.

- FOS abbreviations are: u: FOS for undrained analysis, d: FOS for drained analysis.
 Probability assessed as per Table A and B of Appendix D in PSA.
 Impact based on distance of infrastructure element to nearest watercourse.

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX C

Calculated FOS for Peat Slopes on Site

Calculat	ted FoS o	of Natura	l Peat S	lopes for	Sheskin So	uth Wii	nd Farm - Und	rained Anal	ysis
Turbine No./Waypoint	Easting	Northing	Slope	Undrained shear strength	Bulk unit weight of Peat	Peat Depth	Surcharge Equivalent Placed Fill Depth (m)	Factor of Safety	or Load Condition
			β (deg)	c _u (kPa)	γ (kN/m³)	(m)	Condition (2)	Condition (1)	Condition (2)
T01	493540	824053	3	5	10	3.0	4.0	3.19	2.39
T02	492485	824313	3	5	10	2.0	3.0	4.78	3.19
T03 T04	493171 493318	825360 824925	5 2	5 5	10 10	1.6 3.4	2.6 4.4	3.60 4.22	2.21 3.26
T05	493318	824925 826139	5	5	10	2.8	3.8	2.06	1.52
T06	493000	825784	5	5	10	1.2	2.2	4.80	2.62
T07	493158	826709	5	5	10	2.3	3.3	2.50	1.75
T08	493355	827503	6	5	10	1.7	2.7	2.83	1.78
T09 T10	493535 493769	826354 824835	6 4	5 5	10 10	1.1 2.5	2.1 3.5	4.37 2.87	2.29
T11	493662	827239	4	5	10	1.8	2.8	3.99	2.57
T12	494692	828350	4	5	10	3.6	4.6	2.00	1.56
T13	494085	827802	3	5	10	2.8	3.8	3.42	2.52
T14	494563	827383	3	5	10	2.5	3.5	3.83	2.73
T15 T16	494849 493115	827929 824241	2	5 5	10 10	2.6 2.7	3.6 3.7	2.76 5.31	2.00 3.87
T17	493115	823822	3	5	10	2.7	3.4	3.99	2.81
T18	492870	823674	3	5	10	3.0	4.0	3.19	2.39
T19	493729	825893	5	5	10	1.8	2.8	3.20	2.06
T20	494797	826713	5	5	10	2.9	3.9	1.99	1.48
T21	493929	825398	4	5	10	1.4	2.4	5.13	2.99
Met Mast Substation (1)	492700 494111	825934 824433	3	5 5	10 10	1.9 3.3	2.9 4.3	3.78 2.90	2.48
Substation (1) Substation (2)	494111	824433 827007	5	5	10	1.8	2.8	3.20	2.22
Construction Compound (1)	493332	824104	3	5	10	3.0	4.0	3.19	2.39
Construction Compound (2)	493275	826243	4	5	10	1.7	2.7	4.23	2.66
Construction Compound (3)	493790	827608	4	5	10	1.8	2.8	3.99	2.57
Construction Compound (4)	495340	826865	5	5	10	1.3	2.3	4.43	2.50
Borrow Pit 1	494573	827695	6	5	10	1.4	2.4	3.44	2.00
Borrow Pit 2 Borrow Pit 3	494860 493341	827197 826777	6 5	5 5	10 10	1.6 0.9	2.6 1.9	3.01 6.40	1.85 3.03
Borrow Pit 4	493436	826478	4	5	10	1.6	2.6	4.49	2.76
Borrow Pit 5	492958	826190	5	5	10	0.3	1.3	19.20	4.43
Borrow Pit 6	493376	825925	6	5	10	1.9	2.9	2.53	1.66
3	493913	824269	3	5	10	0.8	1.8	11.96	5.31
<u>6</u> 9	493361 493080	824503 824606	4 5	5 5	10 10	3.3 0.8	4.3 1.8	2.18 7.20	1.67 3.20
13	493080	825346	3	5	10	1.2	2.2	7.20	4.35
14	494131	825335	3	5	10	0.7	1.7	13.67	5.63
15	494038	825340	3	5	10	0.4	1.4	23.92	6.83
17	493843	825336	3	5	10	0.5	1.5	19.13	6.38
18	493745	825340	4	5	10	0.3	1.3	23.95	5.53
19	493647	825333	3	5	10	0.4	1.4	23.92	6.83
20 21	493552 493464	825342 825387	3 4	5 5	10 10	0.9	1.9 1.3	10.63 23.95	5.04 5.53
22	493371	825420	3	5	10	1.6	2.6	5.98	3.68
23	493271	825423	3	5	10	0.3	1.3	31.89	7.36
24	493178	825455	3	5	10	0.3	1.3	31.89	7.36
25	493082	825479	4	5	10	0.3	1.3	23.95	5.53
26	493059	825563	3	5	10	0.4	1.4	23.92	6.83
27 28	493078 493080	825661 825761	4	5 5	10 10	0.4	1.4 1.5	17.96 14.37	5.13 4.79
29	493083	825861	5	5	10	1.1	2.1	5.24	2.74
30	493073	825959	4	5	10	0.9	1.9	7.98	3.78
31	493069	826059	4	5	10	1.0	2.0	7.19	3.59
32	493145	826111	4	5	10	0.5	1.5	14.37	4.79
33	493232	826159	3	5	10	0.8	1.8	11.96	5.31
34 35	493317 493400	826212 826268	3 4	5 5	10 10	1.0 1.1	2.0 2.1	9.57 6.53	4.78 3.42
36	493400	826332	3	5	10	1.1	2.1	7.97	4.35
37	493512	826425	3	5	10	1.6	2.6	5.98	3.68
38	493537	826519	2	5	10	1.2	2.2	11.95	6.52
39	493541	826611	2	5	10	1.1	2.1	13.03	6.83
40	493520	826709	3	5	10	1.0	2.0	9.57	4.78
41	493477 493331	826799 826928	4	5 5	10 10	1.6 2.2	2.6 3.2	4.49 3.27	2.76 2.25
44	493331	827012	3	5	10	1.6	2.6	5.98	3.68
45	493375	827095	3	5	10	1.4	2.4	6.83	3.99
46	493412	827187	4	5	10	1.6	2.6	4.49	2.76
47	493417	827282	4	5	10	0.4	1.4	17.96	5.13
48	493398	827380	3	5	10	1.6	2.6	5.98	3.68
50 51	493428	827564 827619	3	5 5	10 10	2.7 0.2	3.7 1.2	3.54 71.68	2.59
51 52	493511 493605	827619 827594	3	5	10	1.2	2.2	71.68 7.97	11.95 4.35
53	493605	827588	4	5	10	0.8	1.8	8.98	3.99
55	493860	827470	3	5	10	1.1	2.1	8.70	4.56
56	493868	827372	3	5	10	2.0	3.0	4.78	3.19
57	493871	827272	3	5	10	1.3	2.3	7.36	4.16
58	493882	827173	3	5	10	1.8	2.8	5.31	3.42
59	493905	827076	2	5	10	1.3	2.3	11.03	6.23
60 61	493974 494070	827010 827038	3	5 5	10 10	1.7 1.8	2.7 2.8	5.63 5.31	3.54 3.42
62	494070	827038 827045	3	5	10	1.8	2.8	6.38	3.42
U۷	727200	UZ/U+J	2	5	10	0.2	1.2	71.68	11.95

							nd Farm - Und		
rbine No./Waypoint	Easting	Northing	Slope	Undrained shear strength	Bulk unit weight of Peat	Peat Depth	Surcharge Equivalent Placed Fill Depth (m)	Factor of Safety fo	or Load Condition
			β (deg)	c _u (kPa)	γ (kN/m³)	(m)	Condition (2)	Condition (1)	Condition (2)
69	494957	827131	4	5	10	1.9	2.9	3.78	2.48
70	495045	827125	4	5	10	1.3	2.3	5.53	3.12
71	495141	827114	4	5	10	2.2	3.2	3.34	2.28
72	495220	827054	3	5	10	0.3	1.3	31.89	7.36
75 88	495360 494169	826797 824333	4	5 5	10 10	0.2	1.2 1.4	35.93 17.96	5.99 5.13
89	494231	824574	4	5	10	2.3	3.3	3.12	2.18
90	494312	824811	3	5	10	1.8	2.8	5.31	3.42
91	494395	825047	3	5	10	2.5	3.5	3.83	2.73
93	494545	825467	2	5	10	3.0	4.0	4.78	3.58
94	494491	825548	3	5	10	1.2	2.2	7.97	4.35
96	494780	825971	2	5	10	0.2	1.2	71.68	11.95
97	494994	826096	2	5	10	0.9	1.9	15.93	7.55
98	495151	826286	3	5	10	1.8	2.8	5.31	3.42
99	495294	826491	3	5	10	1.8	2.8	5.31	3.42
100 101	495440 495586	826694 826897	3	5 5	10 10	0.4 2.2	1.4 3.2	23.92 6.52	6.83 4.48
102	495732	827100	3	5	10	0.4	1.4	23.92	6.83
103	495811	827209	2	5	10	0.5	1.5	28.67	9.56
104	493675	824256	2	5	10	2.0	3.0	7.17	4.78
108	492973	823877	4	5	10	3.6	4.6	2.00	1.56
111	492922	824091	2	5	10	2.1	3.1	6.83	4.62
114	492613	823851	3	5	10	3.3	4.3	2.90	2.22
117	492464	824111	4	5	10	2.1	3.1	3.42	2.32
127	493246	824761	3	5	10	2.1	3.1	4.56	3.09
130	493588	824822 824645	3	5	10	2.3	3.3	4.16	2.90
133 142	494012 493380	824645 825844	3 4	5	10 10	2.3 0.5	3.3 1.5	4.16 14.37	2.90 4.79
149	493499	827240	6	5	10	0.8	1.8	6.01	2.67
152	493866	827702	5	5	10	2.1	3.1	2.74	1.86
155	494106	828038	5	5	10	1.3	2.3	4.43	2.50
157	494306	828205	8	5	10	1.2	2.2	3.02	1.65
165	494650	827653	3	5	10	1.7	2.7	5.63	3.54
173	495039	826882	5	5	10	0.8	1.8	7.20	3.20
WP1	493374	824237	3	5	10	3.9	4.9	2.45	1.95
WP2	494688	827166	4	5	10	1.6	2.6	4.49	2.76
WP3	494833	828146	4	5	10	2.7	3.7	2.66	1.94
WP4 WP5	494119 493872	827705 825787	4	5 5	10 10	1.7 1.7	2.7 2.7	4.23 4.23	2.66 2.66
WP7	494394	826907	5	5	10	1.8	2.8	3.20	2.06
WP8	494555	826584	4	5	10	1.6	2.6	4.49	2.76
MKO Probes	_								
1	493486	827227	5	5	10	1.2	2.2	4.80	2.62
2	493536	827227	5	5	10	1.9	2.9	3.03	1.99
3	493601	827242	5	5	10	1.0	2.0	5.76	2.88
10	493360	827480	8	5	10	1.3	2.3	2.79	1.58
36	495080	827015	5	5	10	1.6	2.6	3.60	2.21
43	494759	827115	4	5	10	3.0	4.0	2.40	1.80
45	494712	827131	4	5	10	2.2	3.2	3.27	2.25
46	494664	827190	2	5	10	2.7	3.7	5.31	3.87
47	494620	827227	2	5	10	3.1	4.1	4.62	3.50
48 51	494579 494569	827242 827312	2	5	10 10	3.0 3.5	4.0 4.5	4.78 4.10	3.58 3.19
53	494559	827312	3	5	10	2.0	3.0	4.78	3.19
64	494793	827981	3	5	10	2.1	3.1	4.56	3.09
68	494719	828038	5	5	10	3.2	4.2	1.80	1.37
90	492631	824247	2	5	10	3.0	4.0	4.78	3.58
91	492572	824150	4	5	10	2.3	3.3	3.12	2.18
			3	5	10	2.1	3.1	4.56	3.09
94	492418	823982						5.74	3.82
94 100	492534	823875	2.5	5	10	2.0	3.0		
94 100 101	492534 492667	823875 823893	2.5	5 5	10	4.1	5.1	2.80	2.25
94 100 101 102	492534 492667 492761	823875 823893 823866	2.5 2.5	5 5 5	10 10	4.1 2.3	5.1 3.3	2.80 4.99	2.25 3.48
94 100 101 102 103	492534 492667 492761 492812	823875 823893 823866 823827	2.5 2.5 3.5	5 5 5 5	10 10 10	4.1 2.3 2.1	5.1 3.3 3.1	2.80 4.99 3.91	2.25 3.48 2.65
94 100 101 102	492534 492667 492761	823875 823893 823866	2.5 2.5	5 5 5	10 10	4.1 2.3	5.1 3.3	2.80 4.99	2.25 3.48
94 100 101 102 103 104	492534 492667 492761 492812 492816	823875 823893 823866 823827 823788	2.5 2.5 3.5 3.5	5 5 5 5 5	10 10 10 10	4.1 2.3 2.1 2.0	5.1 3.3 3.1 3.0	2.80 4.99 3.91 4.10	2.25 3.48 2.65 2.74
94 100 101 102 103 104 113	492534 492667 492761 492812 492816 493078	823875 823893 823866 823827 823788 824256	2.5 2.5 3.5 3.5 3	5 5 5 5 5 5 5	10 10 10 10 10	4.1 2.3 2.1 2.0 2.8 4.0 2.0	5.1 3.3 3.1 3.0 3.8	2.80 4.99 3.91 4.10 3.42	2.25 3.48 2.65 2.74 2.52
94 100 101 102 103 104 113 119 120	492534 492667 492761 492812 492816 493078 493089 493062 493127	823875 823893 823866 823827 823788 824256 824388 824443 824565	2.5 2.5 3.5 3.5 3 2.5 5	5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57
94 100 101 102 103 104 113 119 120 121	492534 492667 492761 492812 492816 493078 493089 493062 493127 493711	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5	5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87
94 100 101 102 103 104 113 119 120 121 130 133	492534 492667 492761 492812 492816 493078 493089 493062 493127 493711 495334	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5	5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84
94 100 101 102 103 104 113 119 120 121 130 133 134	492534 492667 492761 492812 492816 493078 493089 493062 493127 493711 495334 495334	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5	5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12
94 100 101 102 103 104 113 119 120 121 130 133 134	492534 492667 492761 492816 493078 493089 493062 493127 493711 495334 495334 495321	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 0.5 1.3 0.4	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83
94 100 101 102 103 104 113 119 120 121 130 133 134 135 136	492534 492667 492761 492816 492816 493078 493089 493062 493127 493711 495334 495334 495321 495289	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826852 826891 826958	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36
94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141	492534 492667 492761 492812 492816 493078 493089 493062 493127 493711 495334 495334 495321 495289 494796	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958 826975 826706	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36
94 100 101 102 103 104 113 119 120 121 130 133 134 135 141 190	492534 492667 492761 492816 493078 493089 493062 493127 493711 495334 495334 495321 495289 494796 493670	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958 826975 826706	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78 4.79	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36 2.48
94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141	492534 492667 492761 492812 492816 493078 493089 493062 493127 493711 495334 495334 495321 495289 494796	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958 826975 826706	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36
94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 140 191	492534 492667 492761 492812 492816 493078 493089 493062 493127 493711 495334 495334 495321 495221 495289 494796 493670 493704	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958 826975 826706 827604	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78 4.79 3.12	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36 2.48 2.87
94 100 101 102 103 104 113 119 120 121 130 133 133 134 135 136 141 190 191 192	492534 492667 492761 492816 493078 493089 493062 493127 493711 495334 495334 495321 495289 494796 493704 493704 493719	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958 826706 827604 827621	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4 4 4	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78 4.79 3.12 3.99	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36 2.48 2.87 2.18
94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192	492534 492667 492761 492812 492816 493078 493089 493062 493127 493711 495334 495321 495321 495321 495321 495370 493709	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958 826975 826706 827604 827621 827661	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4 4 4 4 4 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.8	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78 4.79 3.12 3.99 3.03	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36 2.48 2.87 2.18 2.57
94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 191 192 193 194	492534 492667 492761 492812 492816 493078 493089 493062 493127 493711 495334 495334 495321 495289 494796 493670 493704 493775 493832	823875 823893 823866 823827 824256 824388 824456 824443 824565 825900 826852 826891 826975 826706 827604 827621 827651 827662 827674	2.5 2.5 3.5 3.5 3 2.5 5 4 4 5.5 5 4 4 3 3 4 4 4 4 4 4 4 4 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.8 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.8	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78 4.79 3.12 3.99 3.03 2.06	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36 2.48 2.87 2.18 2.57 1.99
94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 199 191 192 193 194 195 196 201	492534 492667 492761 492816 493078 493089 493062 493127 493711 495334 495334 495321 495289 494796 493670 493704 493719 493775 493832 493892 493932 494101	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958 826975 826706 827604 827651 827652 8276764 827652 8276764 827653 8276774 827703	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 4 4 4 4 5 5 5 5 5 2.5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.8 2.8 2.6 2.5 2.8	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.8 3.6 3.5 3.8	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78 4.79 3.12 3.99 3.03 2.06 2.21 2.30 4.10	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36 2.48 2.87 2.18 2.57 1.99 1.52 1.60 1.65 3.02
94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192 193 193 194 195 196	492534 492667 492761 492816 493078 493089 493062 493127 493711 495334 495334 495321 495221 49529 494796 493704 493719 493719 493719 493729 493729 493795 493892 493892 493932	823875 823893 823866 823827 823788 824256 824388 824443 824565 825900 826852 826891 826958 826975 826706 827604 827621 827651 827662 827674 827737	2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4 4 4 4 5 5 5 5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.8 1.9 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.6 3.6 3.5	2.80 4.99 3.91 4.10 3.42 2.87 2.88 3.99 2.91 11.52 5.53 23.92 31.89 3.78 4.79 3.12 3.99 3.03 2.06 2.21 2.30	2.25 3.48 2.65 2.74 2.52 2.29 1.92 2.57 1.87 3.84 3.12 6.83 7.36 2.48 2.87 2.18 2.57 1.99 1.52 1.60 1.65

				-			nd Farm - Und		
rbine No./Waypoint	Easting	Northing	Slope	Undrained shear strength	Bulk unit weight of Peat	Peat Depth	Surcharge Equivalent Placed Fill Depth (m)	Factor of Safety 1	or Load Condition
			β (deg)	c _u (kPa)	γ (kN/m³)	(m)	Condition (2)	Condition (1)	Condition (2
205	494106	828049	5	5	10	2.5	3.5	2.30	1.65
206	494108	828100	4	5	10	2.2	3.2	3.27	2.25
207	494167	828106	5	5	10	2.5	3.5	2.30	1.65
208	494206	828140	4	5	10	2.2	3.2	3.27	2.25
209	494250	828167	7	6	10	2.6	3.6	1.96	1.42
210 211	494278 494333	828199 828214	5.5 4	5 5	10 10	3.0 1.8	4.0 2.8	1.75 3.99	1.31 2.57
212	494388	828166	3.5	5	10	3.3	4.3	2.49	1.91
213	494438	828147	3.3	5	10	3.8	4.8	2.52	1.99
214	494500	828122	4	5	10	3.2	4.2	2.25	1.71
215	494561	828130	3	5	10	3.2	4.2	2.99	2.28
216	494558	828182	3	5	10	4.6	5.6	2.08	1.71
217	494599	828218	5.5	5	10	2.2	3.2	2.38	1.64
229	494672	828360	5	5	10	2.0	3.0	2.88	1.92
230	494656	828284	7	5	10	1.7	2.7	2.43	1.53
233	494684	828093	5.5	5	10	1.8	2.8	2.91	1.87
234 235	494649 494596	828120 828142	5.5 5.5	5 5	10 10	1.8 2.2	2.8 3.2	2.91 2.38	1.87 1.64
252	493151	824595	5.5	5	10	2.8	3.8	1.87	1.38
253	493188	824692	3.5	5	10	3.4	4.4	2.41	1.86
254	493259	824739	3.5	5	10	2.2	3.2	3.73	2.56
255	493292	824795	2.5	5	10	1.8	2.8	6.37	4.10
256	494204	824565	3	5	10	3.1	4.1	3.09	2.33
259	494128	824581	2.5	5	10	1.5	2.5	7.65	4.59
260	494088	824602	1	5	10	2.0	3.0	14.33	9.55
261	494044	824637	1	5	10	3.8	4.8	7.54	5.97
262	493977	824657	1	5	10	2.8	3.8	10.23	7.54
263	493911	824643	1	5	10	4.1	5.1	6.99	5.62
264	493931	824697	1	5	10	3.8	4.8	7.54	5.97
266	493893	824737	4	5	10	3.7	4.7	1.94	1.53
267	493844 493788	824752 824785	4	5 5	10 10	2.8	3.8 3.6	2.57 2.76	1.89 2.00
268 269	493750	824823	2.5	5	10	2.4	3.4	4.78	3.37
270	493680	824827	2.5	5	10	2.5	3.5	4.59	3.28
271	493613	824829	2.5	5	10	2.5	3.5	4.59	3.28
272	493535	824842	2.5	5	10	2.7	3.7	4.25	3.10
273	493466	824842	2	5	10	3.1	4.1	4.62	3.50
274	493409	824840	2	5	10	3.2	4.2	4.48	3.41
275	493370	824804	2	5	10	2.1	3.1	6.83	4.62
276	493352	824851	2	5	10	3.3	4.3	4.34	3.33
277	493326	824907	2	5	10	3.4	4.4	4.22	3.26
278	493308	824986	2.5	5	10	3.5	4.5	3.28	2.55
279	493281	825026	2.5	5	10	3.7	4.7	3.10	2.44
280	493212	825045	2.5	5	10	3.8	4.8	3.02	2.39
281 282	493186	825103	2	5 5	10 10	3.6 4.0	4.6	3.98 3.58	3.12
283	493130 493081	825139 825183	2	5	10	3.9	5.0 4.9	3.68	2.87
290	493744	824339	2	<u>5</u>	10	3.5	4.5	4.10	3.19
291	493714	824295	2	5	10	3.0	4.0	4.78	3.58
292	493670	824260	2	5	10	2.0	3.0	7.17	4.78
293	493646	824220	2	5	10	2.5	3.5	5.73	4.10
294	493633	824202	2	5	10	0.8	1.8	17.92	7.96
295	493603	824157	2	5	10	3.0	4.0	4.78	3.58
296	493581	824118	2	5	10	3.6	4.6	3.98	3.12
297	493520	824040	2	5	10	3.0	4.0	4.78	3.58
298	493551	823997	2	5	10	3.8	4.8	3.77	2.99
299 300	493540 493520	824053 824099	3	5 5	10 10	3.0 3.0	4.0 4.0	4.78 3.19	3.58 2.39
301	493520	824099 824047	2	5	10	3.4	4.4	4.22	3.26
302	493374	824047	1	5	10	2.6	3.6	11.02	7.96
303	493280	823985	2	5	10	3.9	4.9	3.68	2.93
304	493179	823929	2	5	10	3.4	4.4	4.22	3.26
305	493090	823924	2	5	10	3.6	4.6	3.98	3.12
306	492977	823894	2	5	10	3.6	4.6	3.98	3.12
325	492618	826063	5	5	10	2.5	3.5	2.30	1.65
326	492625	826007	2.5	5	10	1.8	2.8	6.37	4.10
327	492649	825983	2.5	5	10	2.2	3.2	5.22	3.59
328 329	492689	825961	2.5	5	10 10	1.0	2.0	11.47	5.74 4.41
329 348	492680 493292	825907 826893	2.5 5.5	5 5	10	1.6 2.5	2.6 3.5	7.17 2.10	1.50
348 349	493292	826893 826851	5.5	5	10	1.6	2.6	3.28	2.02
350	493237	826820	5.5	5	10	2.5	3.5	2.10	1.50
351	493197	826803	5.5	5	10	2.4	3.4	2.18	1.54
352	493176	826759	5.5	5	10	2.7	3.7	1.94	1.42
355	493164	826708	6	5	10	1.7	2.7	2.83	1.78
361	493995	824212	2.5	5	10	2.7	3.7	4.25	3.10
362	493888	824295	2.5	5	10	2.7	3.7	4.25	3.10
363	493784	824350	3	5	10	4.7	5.7	2.04	1.68
364	493624	824404	3.5	5	10	2.6	3.6	3.16	2.28
365	493455	824467	3.5	5	10	2.1	3.1	3.91	2.65
366	493320	824520	3.5	5	10	2.7	3.7	3.04	2.22
446	494691	828030	6	5	10	2.0	3.0	2.40	1.60
495	493116	825803	3	5	10	1.7	2.7	5.63	3.54
496	493182	825817	3	5	10	3.1	4.1	3.09	2.33
497	493258	825827	3	5	10	2.0	3.0	4.78	3.19

urbine No./Waypoint	Easting	Northing	Slope	Undrained shear strength	r Bulk unit weight of Peat	Peat Depth	Surcharge Equivalent Placed Fill Depth (m)	-		
			β (deg)	c _u (kPa)	γ (kN/m³)	(m)	Condition (2)	Condition (1)	Condition (2	
499	493384	825859	3	5	γ (κιν/π) 10	2.0	3.0	4.78	3.19	
500	493364	825872	3	5	10	1.2	2.2	7.97	4.35	
501	493455	825884	3	5	10	0.7	1.7	13.67	5.63	
509	493433	825900	3	5	10	1.0	2.0	9.57	4.78	
510	493542	825915	3	5	10	0.9	1.9	10.63	5.04	
511	493584	825872	5	5	10	1.8	2.8	3.20	2.06	
557	493120	824517	4	5	10	2.2	3.2	3.27	2.25	
558	493075	824481	4	5	10	2.8	3.8	2.57	1.89	
559	492976	824443	1	5	10	3.8	4.8	7.54	5.97	
560	492881	824375	2	5	10	3.0	4.0	4.78	3.58	
561	492813	824335	2.5	5	10	2.7	3.7	4.25	3.10	
562	492669	824315	2	5	10	4.5	5.5	3.19	2.61	
564	492537	824261	3	5	10	2.4	3.4	3.99	2.81	
574	492384	824023	3	5	10	1.9	2.9	5.04	3.30	
576	492426	823917	4	5	10	2.1	3.1	3.42	2.32	
592	492843	823707	3	5	10	2.6	3.6	3.68	2.66	
658	494944	826765	3.5	5	10	1.0	2.0	8.21	4.10	
659	494980	826806	3.5	5	10	1.3	2.3	6.31	3.57	
660	495024	826865	10	5	10	0.7	1.7	4.18	1.72	
661	495062	826913	8	6	10	2.0	3.0	2.18	1.45	
663	495088	826997	5.5	5	10	1.3	2.3	4.03	2.28	
679	493013	826082	5	5	10	1.6	2.6	3.60	2.21	
680	492997	826087	5	5	10	0.7	1.7	8.23	3.39	
681	492962	826099	5	5	10	0.5	1.5	11.52	3.84	
682	492935	826123	11	5	10	0.7	1.7	3.81	1.57	
683	492905	826117	11	5	10	1.0	2.0	2.67	1.33	
684	492868	826117	11	6	10	1.1	2.1	2.91	1.53	
685	492841	826139	8	6	10	2.0	3.0	2.18	1.45	
686	492798	826134	8	5	10	1.3	2.3	2.79	1.58	
687	492759	826151	7	6	10	2.5	3.5	1.98	1.42	
688	492723	826129	6	5	10	2.2	3.2	2.19	1.50	
689	492690	826114	6	5	10	2.2	3.2	2.19	1.50	
690	492649	826098	6	5	10	2.4	3.4	2.00	1.41	
700	493483	827598	3	5	10	4.0	5.0	2.39	1.91	
710	493079	825440	6.5	5	10	1.9	2.9	2.34	1.53	
711	493067	825383	2	5	10	3.8	4.8	3.77	2.99	
712	493056	825303	2	5	10	4.0	5.0	3.58	2.87	
713	493050	825198	2	5	10	3.2	4.2	4.48	3.41	
Grid Connection										
pt 29	94171	324012	2	5	10	3.2	4.2	4.48	3.41	
pt 31	94145	323713	2	5	10	3.5	4.5	4.10	3.19	
pt 33	94117	323414	2	5	10	2.7	3.7	5.31	3.87	
pt 35	94099	323115	2	5	10	2.8	3.8	5.12	3.77	
pt 37	94095	322817	2	5	10	2.6	3.6	5.51	3.98	
pt 39	94105	322519	2	5	10	2.8	3.8	5.12	3.77	
pt 41	94213	322241	4	5	10	0.7	1.7	10.26	4.23	
pt 43	94083	321972	4	5	10	1.8	2.8	3.99	2.57	
pt 45	93936	321711	3	5	10	2.7	3.7	3.54	2.59	
pt 47	93959	321478	3	5	10	3.0	4.0	3.19	2.39	
pt 49	94110	321223	3	5	10	1.6	2.6	5.98	3.68	
pt 51	94355	321052	3	5	10	2.7	3.7	3.54	2.59	
pt 53	94609	320892	6	5	10	1.8	2.8	2.67	1.72	
pt 55	94852	320715	3	5	10	1.7	2.7	5.63	3.54	
pt 57	95097	320543	3	5	10	1.5	2.5	6.38	3.83	
pt 59	95370	320421	3	5	10	0.9	1.9	10.63	5.04	
pt 61	95666	320386	3	5	10	1.1	2.1	8.70	4.56	
pt 63	95963	320423	3	5	10	1.6	2.6	5.98	3.68	
pt 65	96259	320463	3	5	10	0.8	1.8	11.96	5.31	
pt 67	96519	320328	3	5	10	1.5	2.5	6.38	3.83	
			3	5	10	0.2	1.2	47.83	7.97	

Minimum = 1.75 1.31 Maximum = 71.68 11.95 Average = 7.00 3.36

⁽¹⁾ Assuming a bulk unit weight for peat of $10kN/m^3$ (2) Assuming a surcharge equivalent to fill depth of 1m of peat i.e. 10kPa (3) Slope inclination (β) based on site readings and site contour plans

⁽⁴⁾ A lower bound undrained shear strength, cu for the peat of 5/6kPa was selected for the assessment. It should be noted that a cu of 5/6kPa for the pea is considered a conservative value for the analysis and is not representative of all peat present across the site. In reality the peat has a significantly higher undrained strength.
(5) Peat depths based on probes carried out by FT.

⁽⁶⁾ For load conditions see report text.

Calcu	lated FoS of Natural Peat Slopes for Sheskin South Wind Farm - Drained Analy									lysis	
Turbine No./Waypoint	Slope	e Design c'	Bulk unit weight of Peat	Unit weight of Water	Depth of In situ Peat	Friction Angle	Surcharge Equivalent Placed Fill	Equivalent Total Depth of Peat (m)	Factor of Safety for Load Condition		
	α (deg)	c' (kPa)	γ (kN/m³)	$\gamma_{\rm w} (kN/m^3)$	(m)	ø' (deg)	Condition (2)	Condition (2)	Condition (1)	Condition (2)	
									100% Water	100% Water	
T01	3	4	10.0	10.0	3.0	25	1.0	4.0	2.55	4.14	
T02	3	4	10.0	10.0	2.0	25	1.0	3.0	3.83	5.52	
T03	5	4	10.0	10.0	1.6	25	1.0	2.6	2.88	3.82	
T04 T05	2 5	4	10.0 10.0	10.0 10.0	3.4 2.8	25 25	1.0 1.0	4.4 3.8	3.37 1.65	5.64 2.61	
T06	5	4	10.0	10.0	1.2	25	1.0	2.2	3.84	4.52	
T07	5	4	10.0	10.0	2.3	25	1.0	3.3	2.00	3.01	
T08	6	4	10.0	10.0	1.7	25	1.0	2.7	2.26	3.07	
T09	6	4	10.0	10.0	1.1	25	1.0	2.1	3.50	3.94	
T10	4	4	10.0	10.0	2.5	25	1.0	3.5	2.30	3.55	
T11 T12	4	4	10.0 10.0	10.0 10.0	1.8 3.6	25 25	1.0 1.0	2.8 4.6	3.19 1.60	4.43 2.70	
T13	3	4	10.0	10.0	2.8	25	1.0	3.8	2.73	4.36	
T14	3	4	10.0	10.0	2.5	25	1.0	3.5	3.06	4.73	
T15	4	4	10.0	10.0	2.6	25	1.0	3.6	2.21	3.45	
T16	2	4	10.0	10.0	2.7	25	1.0	3.7	4.25	6.71	
T17 T18	3	4	10.0 10.0	10.0 10.0	2.4 3.0	25 25	1.0 1.0	3.4 4.0	3.19 2.55	4.87 4.14	
T19	5	4	10.0	10.0	1.8	25	1.0	2.8	2.56	3.55	
T20	5	4	10.0	10.0	2.9	25	1.0	3.9	1.59	2.55	
T21	4	4	10.0	10.0	1.4	25	1.0	2.4	4.11	5.17	
Met Mast	4	4	10.0	10.0	1.9	25	1.0	2.9	3.03	4.28	
Substation (1)	3 5	4	10.0	10.0	3.3	25	1.0	4.3	2.32	3.85	
Substation (2) Construction Compound (1)	3	4	10.0 10.0	10.0 10.0	1.8 3.0	25 25	1.0 1.0	2.8 4.0	2.56 2.55	3.55 4.14	
onstruction Compound (2)	4	4	10.0	10.0	1.7	25	1.0	2.7	3.38	4.60	
Construction Compound (3)	4	4	10.0	10.0	1.8	25	1.0	2.8	3.19	4.43	
Construction Compound (4)	5	4	10.0	10.0	1.3	25	1.0	2.3	3.54	4.32	
Borrow Pit 1	6	4	10.0	10.0	1.4	25	1.0	2.4	2.75	3.45	
Borrow Pit 2	6 5	4	10.0 10.0	10.0	1.6 0.9	25	1.0 1.0	2.6 1.9	2.40 5.12	3.19 5.23	
Borrow Pit 3 Borrow Pit 4	4	4	10.0	10.0	1.6	25 25	1.0	2.6	3.59	4.78	
Borrow Pit 5	5	4	10.0	10.0	0.3	25	1.0	1.3	15.36	7.64	
Borrow Pit 6	6	4	10.0	10.0	1.9	25	1.0	2.9	2.03	2.86	
3	3	4	10.0	10.0	0.8	25	1.0	1.8	9.57	9.20	
9	4	4	10.0	10.0	3.3	25	1.0	4.3	1.74 5.76	2.89	
13	5 3	4	10.0 10.0	10.0	0.8 1.2	25 25	1.0	1.8 2.2	6.38	5.52 7.52	
14	3	4	10.0	10.0	0.7	25	1.0	1.7	10.93	9.74	
15	3	4	10.0	10.0	0.4	25	1.0	1.4	19.13	11.82	
17	3	4	10.0	10.0	0.5	25	1.0	1.5	15.31	11.03	
18	4	4	10.0	10.0	0.3	25	1.0	1.3	19.16	9.55	
19 20	3	4	10.0 10.0	10.0 10.0	0.4 0.9	25 25	1.0 1.0	1.4 1.9	19.13 8.50	11.82 8.71	
21	4	4	10.0	10.0	0.3	25	1.0	1.3	19.16	9.55	
22	3	4	10.0	10.0	1.6	25	1.0	2.6	4.78	6.37	
23	3	4	10.0	10.0	0.3	25	1.0	1.3	25.51	12.73	
24	3	4	10.0	10.0	0.3	25	1.0	1.3	25.51	12.73	
25	4	4	10.0	10.0	0.3	25	1.0 1.0	1.3	19.16	9.55	
26 27	3 4	4	10.0 10.0	10.0 10.0	0.4 0.4	25 25	1.0	1.4 1.4	19.13 14.37	11.82 8.87	
28	4	4	10.0	10.0	0.5	25	1.0	1.5	11.50	8.28	
29	5	4	10.0	10.0	1.1	25	1.0	2.1	4.19	4.73	
30	4	4	10.0	10.0	0.9	25	1.0	1.9	6.39	6.54	
31	4	4	10.0	10.0	1.0	25	1.0	2.0	5.75	6.21	
32 33	3	4	10.0 10.0	10.0	0.5 0.8	25 25	1.0 1.0	1.5 1.8	11.50 9.57	8.28 9.20	
34	3	4	10.0	10.0	1.0	25	1.0	2.0	7.65	8.28	
35	4	4	10.0	10.0	1.1	25	1.0	2.1	5.23	5.91	
36	3	4	10.0	10.0	1.2	25	1.0	2.2	6.38	7.52	
37	3	4	10.0	10.0	1.6	25	1.0	2.6	4.78	6.37	
38 39	2	4	10.0 10.0	10.0	1.2 1.1	25	1.0 1.0	2.2	9.56	11.28 11.82	
39 40	3	4	10.0	10.0	1.1	25 25	1.0	2.1 2.0	10.43 7.65	11.82 8.28	
41	4	4	10.0	10.0	1.6	25	1.0	2.6	3.59	4.78	
43	4	4	10.0	10.0	2.2	25	1.0	3.2	2.61	3.88	
44	3	4	10.0	10.0	1.6	25	1.0	2.6	4.78	6.37	
45	3	4	10.0	10.0	1.4	25	1.0	2.4	5.47	6.90	
46 47	4	4	10.0 10.0	10.0 10.0	1.6 0.4	25 25	1.0 1.0	2.6 1.4	3.59 14.37	4.78 8.87	
48	3	4	10.0	10.0	1.6	25	1.0	2.6	4.78	6.37	
50	3	4	10.0	10.0	2.7	25	1.0	3.7	2.83	4.47	
51	2	4	10.0	10.0	0.2	25	1.0	1.2	57.34	20.68	
52	3	4	10.0	10.0	1.2	25	1.0	2.2	6.38	7.52	
53	4	4	10.0	10.0	0.8	25	1.0	1.8	7.19	6.90	
55	3	4	10.0	10.0	1.1	25	1.0	2.1	6.96	7.88	
56 57	3	4	10.0 10.0	10.0 10.0	2.0 1.3	25 25	1.0 1.0	3.0 2.3	3.83 5.89	5.52 7.20	
58	3	4	10.0	10.0	1.3	25	1.0	2.8	4.25	5.91	
59	2	4	10.0	10.0	1.3	25	1.0	2.3	8.82	10.79	
60	3	4	10.0	10.0	1.7	25	1.0	2.7	4.50	6.13	
61	3	4	10.0	10.0	1.8	25	1.0	2.8	4.25	5.91	
62	3	4	10.0	10.0	1.5	25	1.0	2.5	5.10	6.62	
63 69	2 4	4	10.0 10.0	10.0	0.2 1.9	25 25	1.0 1.0	1.2 2.9	57.34 3.03	20.68 4.28	
	. 4	4	10.0	10.0	1.7	2.3	1.0	4.3	3.03	4.20	

Calcu	lated I	FoS of N	Natural Pe	at Slopes	for Shes	kin Sou	th Wind F	arm - Drair	ed Analysis	
Turbine No./Waypoint	Slope	Design c'	Bulk unit weight	Unit weight	Depth of In	Friction	Surcharge	Equivalent Total	Factor of Safety	or Load Condition
			of Peat	of Water	situ Peat	Angle	Equivalent Placed Fill	Depth of Peat (m)		
	α (deg)	c' (kPa)	γ (kN/m³)	$\gamma_{\rm w}$ (kN/m ³)	(m)	ø' (deg)	Condition (2)	Condition (2)	Condition (1)	Condition (2)
								1	100% Water	100% Water
71 72	3	4	10.0 10.0	10.0	2.2 0.3	25 25	1.0 1.0	3.2 1.3	2.67 25.51	3.94 12.73
75	4	4	10.0	10.0	0.3	25	1.0	1.2	28.74	10.35
88	4	4	10.0	10.0	0.4	25	1.0	1.4	14.37	8.87
89	4	4	10.0	10.0	2.3	25	1.0	3.3	2.50	3.76
90 91	3	4	10.0 10.0	10.0 10.0	1.8 2.5	25 25	1.0 1.0	2.8 3.5	4.25 3.06	5.91 4.73
93	2	4	10.0	10.0	3.0	25	1.0	4.0	3.82	6.21
94	3	4	10.0	10.0	1.2	25	1.0	2.2	6.38	7.52
96	2	4	10.0	10.0	0.2	25	1.0	1.2	57.34	20.68
97 98	3	4	10.0 10.0	10.0	0.9 1.8	25 25	1.0 1.0	1.9 2.8	12.74 4.25	13.06 5.91
99	3	4	10.0	10.0	1.8	25	1.0	2.8	4.25	5.91
100	3	4	10.0	10.0	0.4	25	1.0	1.4	19.13	11.82
101	2	4	10.0	10.0	2.2	25	1.0	3.2	5.21	7.76
102	3	4	10.0	10.0	0.4	25	1.0	1.4	19.13	11.82
103 104	2	4	10.0 10.0	10.0	0.5 2.0	25 25	1.0 1.0	1.5 3.0	22.94 5.73	16.55 8.27
108	4	4	10.0	10.0	3.6	25	1.0	4.6	1.60	2.70
111	2	4	10.0	10.0	2.1	25	1.0	3.1	5.46	8.01
114	3	4	10.0	10.0	3.3	25	1.0	4.3	2.32	3.85
117	4	4	10.0	10.0	2.1	25	1.0	3.1	2.74	4.01
127 130	3	4	10.0 10.0	10.0	2.1	25 25	1.0 1.0	3.1 3.3	3.64 3.33	5.34 5.02
133	3	4	10.0	10.0	2.3	25	1.0	3.3	3.33	5.02
142	4	4	10.0	10.0	0.5	25	1.0	1.5	11.50	8.28
149	6	4	10.0	10.0	0.8	25	1.0	1.8	4.81	4.60
152	5	4	10.0	10.0	2.1	25	1.0	3.1	2.19	3.21
155 157	5 8	4	10.0 10.0	10.0	1.3 1.2	25 25	1.0 1.0	2.3 2.2	3.54 2.42	4.32 2.83
165	3	4	10.0	10.0	1.7	25	1.0	2.7	4.50	6.13
173	5	4	10.0	10.0	0.8	25	1.0	1.8	5.76	5.52
WP1	3	4	10.0	10.0	3.9	25	1.0	4.9	1.96	3.38
WP2	4	4	10.0	10.0	1.6	25	1.0	2.6	3.59	4.78
WP3 WP4	4	4	10.0 10.0	10.0	2.7 1.7	25 25	1.0 1.0	3.7 2.7	2.13 3.38	3.36 4.60
WP5	4	4	10.0	10.0	1.7	25	1.0	2.7	3.38	4.60
WP7	5	4	10.0	10.0	1.8	25	1.0	2.8	2.56	3.55
WP8	4	4	10.0	10.0	1.6	25	1.0	2.6	3.59	4.78
MKO Probes	5	4	10.0	10.0	1.2	25	1.0	2.2	3.84	4.52
2	5	4	10.0	10.0	1.9	25	1.0	2.9	2.42	3.43
3	5	4	10.0	10.0	1.0	25	1.0	2.0	4.61	4.97
10	8	4	10.0	10.0	1.3	25	1.0	2.3	2.23	2.70
36	5	4	10.0	10.0	1.6	25	1.0	2.6	2.88	3.82
43 45	4	4	10.0 10.0	10.0	3.0 2.2	25 25	1.0 1.0	4.0 3.2	1.92 2.61	3.10 3.88
46	2	4	10.0	10.0	2.7	25	1.0	3.7	4.25	6.71
47	2	4	10.0	10.0	3.1	25	1.0	4.1	3.70	6.05
48	2	4	10.0	10.0	3.0	25	1.0	4.0	3.82	6.21
51 53	3	4	10.0 10.0	10.0	3.5	25	1.0 1.0	4.5	3.28	
64	3	4							2 02	5.52
68		4		10.0	2.0	25 25		3.0 3.1	3.83 3.64	5.52 5.34
90	5	4	10.0 10.0		2.0 2.1 3.2	25 25 25	1.0	3.0 3.1 4.2		5.52
	2	4	10.0 10.0 10.0	10.0 10.0 10.0	2.1 3.2 3.0	25 25 25	1.0 1.0 1.0	3.1 4.2 4.0	3.64 1.44 3.82	5.52 5.34 2.37 6.21
91	2	4 4 4	10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3	25 25 25 25 25	1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3	3.64 1.44 3.82 2.50	5.52 5.34 2.37 6.21 3.76
91 94	2 4 3	4 4 4 4	10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1	25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1	3.64 1.44 3.82 2.50 3.64	5.52 5.34 2.37 6.21 3.76 5.34
91 94 100	2 4 3 2.5	4 4 4	10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0	25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0	3.64 1.44 3.82 2.50 3.64 4.59	5.52 5.34 2.37 6.21 3.76 5.34 6.62
91 94	2 4 3	4 4 4 4 4	10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1	25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1	3.64 1.44 3.82 2.50 3.64	5.52 5.34 2.37 6.21 3.76 5.34
91 94 100 101 102 103	2 4 3 2.5 2.5 2.5 2.5 3.5	4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1	25 25 25 25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58
91 94 100 101 102 103 104	2 4 3 2.5 2.5 2.5 2.5 3.5 3.5	4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58
91 94 100 101 102 103 104 113	2 4 3 2.5 2.5 2.5 2.5 3.5 3.5 3.5	4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.3	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73
91 94 100 101 102 103 104 113 119	2 4 3 2.5 2.5 2.5 3.5 3.5 3 2.5	4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 4.2 4.1 2.3 2.1 4.1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.8 5.0	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97
91 94 100 101 102 103 104 113	2 4 3 2.5 2.5 2.5 2.5 3.5 3.5 3.5	4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.1	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.3	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73
91 94 100 101 102 103 104 113 119 120 121 130	2 4 3 2.5 2.5 2.5 3.5 3.5 3.5 5 4 5.5	4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.8 4.0	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 5.1 3.0 3.8 5.0 3.8 5.0 2.8	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43
91 94 100 101 102 103 104 113 119 120 121 130 133	2 4 3 2.5 2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.8 5.0 3.8 5.0 2.8 2.8	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62
91 94 100 101 102 103 104 113 119 120 121 130 133 134	2 4 3 2.5 2.5 2.5 3.5 3 2.5 5 4 4 5.5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40
91 94 100 101 102 103 104 113 119 120 121 130 133 134	2 4 3 2.5 2.5 2.5 3.5 3.5 3.5 3.5 4 5.5 5 4 4 3	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42 19.13	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40
91 94 100 101 102 103 104 113 119 120 121 130 133 134	2 4 3 2.5 2.5 2.5 3.5 3 2.5 5 4 4 5.5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141	2 4 3 2.5 2.5 2.5 3.5 3.5 3.5 5 4 5.5 5 4 3 3 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.0 5.1 3.0 2.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42 19.13 25.51 3.03 3.83	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191	2 4 3 2.5 2.5 2.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 3.19 2.30 3.19 2.33 3.19 2.33 3.19 3.33 3.28 2.73 3.19 3.30 3.30 3.30 3.30 3.30 3.30 3.30 3.3	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191	2 4 3 2.5 2.5 2.5 3.5 3 2.5 5 4 5.5 5 4 3 3 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.0 2.8 4.0 2.8 4.0 0.5 1.8 0.5 1.9 1.9 1.5 2.3 1.8	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 5.1 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42 19.13 25.51 3.03 3.83 2.50 3.19	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192	2 4 3 2.5 2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.0 2.8 4.0 2.0 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.9	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.0 5.1 3.0 3.8 5.0 3.8 5.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.8 2.9	3.64 1.44 3.82 2.50 3.64 4.59 3.13 3.28 2.73 2.29 2.30 3.19 2.31 3.19 3.25 3.03 3.19 2.42	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191	2 4 3 2.5 2.5 2.5 3.5 3.5 3 2.5 5 4 3 3 4 4 4 4 4 4 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.8 1.9 2.8	25 25 25 25 25 25 25 25 25 25 25 25 25 2	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.8 2.9 3.8	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42 19.13 25.51 3.03 3.83 2.50 3.19 2.42	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76 4.43
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192 193 194	2 4 3 2.5 2.5 2.5 3.5 3.5 3 2.5 5 4 5.5 5 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.0 2.8 4.0 2.0 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.9	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.0 5.1 3.0 3.8 5.0 3.8 5.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.8 2.9	3.64 1.44 3.82 2.50 3.64 4.59 3.13 3.28 2.73 2.29 2.30 3.19 2.31 3.19 3.25 3.03 3.19 2.42	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 6.62 5.40 11.82 12.73 4.28 4.97 3.76
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192 193 194 195 196 201	2 4 3 3 2.5 2.5 2.5 3.5 3 2.5 5 4 5.5 5 4 4 4 4 4 4 4 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 3.2 3.2 3.1 3.0 3.1 3.0 3.1 3.1 3.0 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 5.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.8 3.6 3.6 3.5 3.8	3.64 1.44 3.82 2.50 3.64 4.59 3.63 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42 19.13 25.51 3.03 3.83 2.50 3.19 2.42 1.65 1.77 1.84	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76 4.43 3.43 4.28 4.97 3.76
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192 193 194 195 196 201 202	2 4 3 2.5 2.5 2.5 3.5 3.5 3.5 5 4 5.5 5 4 4 4 4 4 4 4 4 5 5 5 5 5 2.5 2.5 2.5 2.5 5 4 4 5 5 5 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.8 1.9 2.8 2.6 2.5 2.8 2.8	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.8 3.6 3.6 3.5 3.8 3.8	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42 19.13 25.51 3.03 3.83 2.50 3.19 2.44 1.65 1.77 1.84 3.28 4.10	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 6.62 5.40 11.82 12.73 4.28 4.97 3.76 4.43 3.43 4.28 4.97 3.76
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192 193 194 195 196 201 202 203	2 4 3 2.5 2.5 2.5 3.5 3 2.5 5 4 4 5.5 5 4 4 4 4 4 4 4 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.0 2.8 4.0 2.0 1.8 1.8 0.4 0.3 1.5 2.3 1.8 1.9 2.8 2.6 2.5 2.8 3.0	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 5.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.8 3.6 3.5 3.6 3.5 3.8 4.0	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 3.19 2.33 3.19 2.33 3.19 2.33 3.19 2.42 19.13 25.51 3.03 3.83 2.50 3.19 2.42 1.65 1.77 1.84 3.28 4.10	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76 4.43 3.89 4.28 4.97 3.76 4.43 3.89 4.28 4.97 3.76 4.28 4.97 3.76 4.28 4.97 3.76 4.28 4.97 3.76 4.43 4.28 4.97 3.76 4.43 4.28 4.97 3.76 4.43 4.28 4.97 3.76 4.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.43 3.44 4.58 4.78 5.78 4.78 5.
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192 193 194 195 196 201 202 203 204	2 4 3 2.5 2.5 2.5 3.5 3 2.5 5 4 5.5 5 4 4 4 4 4 4 5 5 5 5 5 5 5 3 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.3 2.1 2.0 2.8 4.0 2.0 1.8 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.8 1.9 2.6 2.5 2.8 2.8 2.8 3.0 2.5	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 5.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.8 3.6 3.5 3.8 3.8 4.0	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42 19.13 25.51 3.03 3.83 2.50 3.19 2.42 1.65 1.77 1.84 3.28 4.10 1.54 3.06	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76 4.43 3.43 6.62 5.40 5.40 5.40 5.40 6.62 6.62 6.63 6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.64 6.65
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192 193 194 195 196 201 202 203	2 4 3 2.5 2.5 2.5 3.5 3 2.5 5 4 4 5.5 5 4 4 4 4 4 4 4 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.0 2.3 2.1 2.0 4.1 2.0 2.8 4.0 2.0 1.8 1.8 0.4 0.3 1.5 2.3 1.8 1.9 2.8 2.6 2.5 2.8 3.0	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 5.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.8 3.6 3.5 3.6 3.5 3.8 4.0	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 3.19 2.33 3.19 2.33 3.19 2.33 3.19 2.42 19.13 25.51 3.03 3.83 2.50 3.19 2.42 1.65 1.77 1.84 3.28 4.10	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76 4.43 3.44 3.43 3.44 3.43 3.44 3.43 3.44 3.45
91 94 100 101 102 103 104 113 119 120 121 130 133 134 135 136 141 190 191 192 193 194 195 196 201 202 203 204 205	2 4 3 2.5 2.5 2.5 3.5 3 2.5 5 4 5.5 5 4 4 4 4 4 4 5 5 5 5 5 5 2.5 2.5 3.5 5 4 5 5 5 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	2.1 3.2 3.2 3.0 2.3 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.8 4.0 2.0 1.8 0.5 1.3 0.4 0.3 1.9 1.5 2.3 1.9 2.8 2.6 2.6 2.8 2.8 3.0 2.5 2.5	25 25 25 25 25 25 25 25 25 25	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	3.1 4.2 4.0 3.3 3.1 3.0 5.1 3.3 3.1 3.0 5.1 3.0 3.8 5.0 3.0 2.8 2.8 1.5 2.3 1.4 1.3 2.9 2.5 3.3 2.8 2.9 3.8 3.6 3.5 3.8 3.6 3.5 3.8 3.8 4.0 3.5 3.5	3.64 1.44 3.82 2.50 3.64 4.59 2.24 3.99 3.13 3.28 2.73 2.29 2.30 3.19 2.33 9.21 4.42 19.13 25.51 3.03 3.83 2.50 3.19 2.42 1.65 1.77 1.84 3.28 4.10 1.54 3.06	5.52 5.34 2.37 6.21 3.76 5.34 6.62 3.89 6.02 4.58 4.73 4.36 3.97 3.31 4.43 3.23 6.62 5.40 11.82 12.73 4.28 4.97 3.76 4.43 3.43 2.61 2.76 2.84 5.23 6.53 2.48

209 210 211 212 213 214 215 216 217 229 230 233	7 5.5 4 3.5 3	c' (kPa)	Bulk unit weight of Peat γ (kN/m³)	Unit weight of Water	Depth of In situ Peat	Friction Angle	Surcharge Equivalent	Equivalent Total Depth of Peat (m)	Factor of Safety	or Load Condition
210 211 212 213 214 215 216 217 229 230	7 5.5 4 3.5 3	4	Peat	of Water	situ Peat	Angle	-	Depth of Peat (m)		
210 211 212 213 214 215 216 217 229 230	7 5.5 4 3.5 3	4	γ (kN/m³)				Placed Fill			
210 211 212 213 214 215 216 217 229 230	5.5 4 3.5 3			γ _w (kN/m³)	(m)	ø' (deg)	Condition (2)	Condition (2)	Condition (1)	Condition (2)
210 211 212 213 214 215 216 217 229 230	5.5 4 3.5 3								100% Water	100% Water
211 212 213 214 215 216 217 229 230	4 3.5 3		10.0	10.0	2.6	25	1.0	3.6	1.31	2.03
212 213 214 215 216 217 229 230	3.5 3	4	10.0 10.0	10.0	3.0 1.8	25 25	1.0 1.0	4.0 2.8	1.40 3.19	2.26 4.43
213 214 215 216 217 229 230	3	4	10.0	10.0	3.3	25	1.0	4.3	1.99	3.30
215 216 217 229 230		4	10.0	10.0	3.8	25	1.0	4.8	2.01	3.45
216 217 229 230	4	4	10.0	10.0	3.2	25	1.0	4.2	1.80	2.96
217 229 230	3	4	10.0	10.0	3.2	25	1.0	4.2	2.39	3.94
229 230	3	4	10.0	10.0	4.6	25	1.0	5.6	1.66	2.96
230	5.5 5	4	10.0 10.0	10.0 10.0	2.2	25 25	1.0 1.0	3.2 3.0	1.91 2.30	2.82 3.31
	7	4	10.0	10.0	1.7	25	1.0	2.7	1.95	2.63
درے	5.5	4	10.0	10.0	1.8	25	1.0	2.8	2.33	3.23
234	5.5	4	10.0	10.0	1.8	25	1.0	2.8	2.33	3.23
235	5.5	4	10.0	10.0	2.2	25	1.0	3.2	1.91	2.82
252	5.5	4	10.0	10.0	2.8	25	1.0	3.8	1.50	2.38
253	3.5	4	10.0	10.0	3.4	25	1.0	4.4	1.93	3.22
254 255	3.5 2.5	4	10.0 10.0	10.0 10.0	2.2 1.8	25 25	1.0 1.0	3.2 2.8	2.98 5.10	4.43 7.09
256	3	4	10.0	10.0	3.1	25	1.0	4.1	2.47	4.04
259	2.5	4	10.0	10.0	1.5	25	1.0	2.5	6.12	7.94
260	1	4	10.0	10.0	2.0	25	1.0	3.0	11.46	16.55
261	1	4	10.0	10.0	3.8	25	1.0	4.8	6.03	10.34
262	1	4	10.0	10.0	2.8	25	1.0	3.8	8.19	13.06
263	1	4	10.0	10.0	4.1	25	1.0	5.1	5.59	9.73
264 266	4	4	10.0 10.0	10.0 10.0	3.8 3.7	25 25	1.0 1.0	4.8 4.7	6.03 1.55	10.34 2.64
267	4	4	10.0	10.0	2.8	25	1.0	3.8	2.05	3.27
268	4	4	10.0	10.0	2.6	25	1.0	3.6	2.21	3.45
269	2.5	4	10.0	10.0	2.4	25	1.0	3.4	3.82	5.84
270	2.5	4	10.0	10.0	2.5	25	1.0	3.5	3.67	5.67
271	2.5	4	10.0	10.0	2.5	25	1.0	3.5	3.67	5.67
272	2.5	4	10.0	10.0	2.7	25	1.0	3.7	3.40	5.37
273 274	2	4	10.0 10.0	10.0 10.0	3.1 3.2	25 25	1.0 1.0	4.1 4.2	3.70 3.58	6.05 5.91
275	2	4	10.0	10.0	2.1	25	1.0	3.1	5.46	8.01
276	2	4	10.0	10.0	3.3	25	1.0	4.3	3.48	5.77
277	2	4	10.0	10.0	3.4	25	1.0	4.4	3.37	5.64
278	2.5	4	10.0	10.0	3.5	25	1.0	4.5	2.62	4.41
279	2.5	4	10.0	10.0	3.7	25	1.0	4.7	2.48	4.23
280 281	2.5	4	10.0 10.0	10.0 10.0	3.8 3.6	25 25	1.0 1.0	4.8 4.6	2.42 3.19	4.14 5.40
282	2	4	10.0	10.0	4.0	25	1.0	5.0	2.87	4.96
283	2	4	10.0	10.0	3.9	25	1.0	4.9	2.94	5.07
290	2	4	10.0	10.0	3.5	25	1.0	4.5	3.28	5.52
291	2	4	10.0	10.0	3.0	25	1.0	4.0	3.82	6.21
292	2	4	10.0	10.0	2.0	25	1.0	3.0	5.73	8.27
293	2	4	10.0	10.0	2.5	25	1.0	3.5	4.59	7.09
294 295	2	4	10.0 10.0	10.0 10.0	0.8 3.0	25 25	1.0 1.0	1.8 4.0	14.34 3.82	13.79 6.21
296	2	4	10.0	10.0	3.6	25	1.0	4.6	3.19	5.40
297	2	4	10.0	10.0	3.0	25	1.0	4.0	3.82	6.21
298	2	4	10.0	10.0	3.8	25	1.0	4.8	3.02	5.17
299	2	4	10.0	10.0	3.0	25	1.0	4.0	3.82	6.21
300	3	4	10.0	10.0	3.0	25	1.0	4.0	2.55	4.14
301 302	1	4	10.0 10.0	10.0 10.0	3.4 2.6	25 25	1.0 1.0	4.4 3.6	3.37 8.82	5.64 13.79
303	2	4	10.0	10.0	3.9	25	1.0	3.b 4.9	8.82 2.94	13.79 5.07
304	2	4	10.0	10.0	3.4	25	1.0	4.4	3.37	5.64
305	2	4	10.0	10.0	3.6	25	1.0	4.6	3.19	5.40
306	2	4	10.0	10.0	3.6	25	1.0	4.6	3.19	5.40
325	5	4	10.0	10.0	2.5	25	1.0	3.5	1.84	2.84
326	2.5	4	10.0	10.0	1.8	25	1.0	2.8	5.10	7.09
327 328	2.5	4	10.0 10.0	10.0 10.0	2.2 1.0	25 25	1.0 1.0	3.2 2.0	4.17 9.18	6.21 9.93
329	2.5	4	10.0	10.0	1.6	25	1.0	2.6	5.74	7.64
348	5.5	4	10.0	10.0	2.5	25	1.0	3.5	1.68	2.58
349	5.5	4	10.0	10.0	1.6	25	1.0	2.6	2.62	3.48
350	5.5	4	10.0	10.0	2.5	25	1.0	3.5	1.68	2.58
351	5.5	4	10.0	10.0	2.4	25	1.0	3.4	1.75	2.66
352	5.5	4	10.0	10.0	2.7	25	1.0	3.7	1.55	2.44
355 361	6 2.5	4	10.0 10.0	10.0 10.0	1.7 2.7	25 25	1.0 1.0	2.7 3.7	2.26 3.40	3.07 5.37
362	2.5	4	10.0	10.0	2.7	25	1.0	3.7	3.40	5.37
363	3	4	10.0	10.0	4.7	25	1.0	5.7	1.63	2.90
364	3.5	4	10.0	10.0	2.6	25	1.0	3.6	2.52	3.94
365	3.5	4	10.0	10.0	2.1	25	1.0	3.1	3.13	4.58
366	3.5	4	10.0	10.0	2.7	25	1.0	3.7	2.43	3.83
446	6	4	10.0	10.0	2.0	25	1.0	3.0	1.92	2.76
495 496	3	4	10.0 10.0	10.0 10.0	1.7 3.1	25 25	1.0 1.0	2.7 4.1	4.50 2.47	6.13 4.04
496	3	4	10.0	10.0	2.0	25	1.0	3.0	3.83	5.52
498	3	4	10.0	10.0	0.7	25	1.0	1.7	10.93	9.74
499	3	4	10.0	10.0	2.0	25	1.0	3.0	3.83	5.52
500	3	4	10.0	10.0	1.2	25	1.0	2.2	6.38	7.52
501	3	4	10.0	10.0	0.7	25	1.0	1.7	10.93	9.74
509	3	4	10.0	10.0	1.0	25	1.0	2.0	7.65	8.28
510 511	<u>3</u>	4	10.0 10.0	10.0 10.0	0.9 1.8	25 25	1.0 1.0	1.9 2.8	8.50 2.56	8.71 3.55

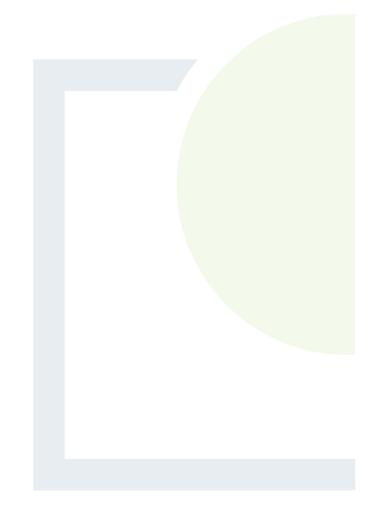
Calculated FoS of Natural Peat Slopes for Sheskin South Wind Farm - Drained Analysis										
Turbine No./Waypoint Slope α (deg)	Slope	Design c'	Bulk unit weight of Peat γ (kN/m³)	Unit weight of Water $ \gamma_w (kN/m^3) $	Depth of In situ Peat (m)	Friction Angle ø' (deg)	Surcharge Equivalent Placed Fill Condition (2)	Equivalent Total Depth of Peat (m) Condition (2)	Factor of Safety for Load Condition	
	α (deg)	c' (kPa)							Condition (1)	Condition (2)
					•	L			100% Water	100% Water
557	4	4	10.0	10.0	2.2	25	1.0	3.2	2.61	3.88
558	4	4	10.0	10.0	2.8	25	1.0	3.8	2.05	3.27
559	1	4	10.0	10.0	3.8	25	1.0	4.8	6.03	10.34
560	2	4	10.0	10.0	3.0	25	1.0	4.0	3.82	6.21
561	2.5	4	10.0	10.0	2.7	25	1.0	3.7	3.40	5.37
562	2	4	10.0	10.0	4.5	25	1.0	5.5	2.55	4.51
564	3	4	10.0	10.0	2.4	25	1.0	3.4	3.19	4.87
574	3	4	10.0	10.0	1.9	25	1.0	2.9	4.03	5.71
576	4	4	10.0	10.0	2.1	25	1.0	3.1	2.74	4.01
592	3	4	10.0	10.0	2.6	25	1.0	3.6	2.94	4.60
658	3.5	4	10.0	10.0	1.0	25	1.0	2.0	6.56	7.09
659	3.5	4	10.0	10.0	1.3	25	1.0	2.3	5.05	6.17
660	10	4	10.0	10.0	0.7	25	1.0	1.7	3.34	2.93
661	8	4	10.0	10.0	2.0	25	1.0	3.0	1.45	2.07
663	5.5	4	10.0	10.0	1.3	25	1.0	2.3	3.23	3.93
679	5	4	10.0	10.0	1.6	25	1.0	2.6	2.88	3.82
680	5	4	10.0	10.0	0.7	25	1.0	1.7	6.58	5.85
681	5	4	10.0	10.0	0.5	25	1.0	1.5	9.21	6.62
682	11	4	10.0	10.0	0.7	25	1.0	1.7	3.05	2.67
683	11	4	10.0	10.0	1.0	25	1.0	2.0	2.14	2.27
684	11	4	10.0	10.0	1.1	25	1.0	2.1	1.94	2.16
685	8	4	10.0	10.0	2.0	25	1.0	3.0	1.45	2.07
686	8	4	10.0	10.0	1.3	25	1.0	2.3	2.23	2.70
687	7	4	10.0	10.0	2.5	25	1.0	3.5	1.32	2.03
688	6	4	10.0	10.0	2.3	25	1.0	3.2	1.75	2.03
689	6	4	10.0	10.0	2.2	25	1.0	3.2	1.75	2.59
690	6	4	10.0	10.0	2.4	25	1.0	3.4	1.60	2.44
	3	4								
700			10.0	10.0	4.0	25	1.0	5.0	1.91	3.31
710	6.5	4	10.0	10.0	1.9	25	1.0	2.9	1.87	2.64
711	2	4	10.0	10.0	3.8	25	1.0	4.8	3.02	5.17
712	2	4	10.0	10.0	4.0	25	1.0	5.0	2.87	4.96
713	2	4	10.0	10.0	3.2	25	1.0	4.2	3.58	5.91
Grid Connection										
pt 29	2	4	10.0	10.0	3.2	25	1.0	4.2	3.58	5.91
pt 31	2	4	10.0	10.0	3.5	25	1.0	4.5	3.28	5.52
pt 33	2	4	10.0	10.0	2.7	25	1.0	3.7	4.25	6.71
pt 35	2	4	10.0	10.0	2.8	25	1.0	3.8	4.10	6.53
pt 37	2	4	10.0	10.0	2.6	25	1.0	3.6	4.41	6.89
pt 39	2	4	10.0	10.0	2.8	25	1.0	3.8	4.10	6.53
pt 41	4	4	10.0	10.0	0.7	25	1.0	1.7	8.21	7.30
pt 43	4	4	10.0	10.0	1.8	25	1.0	2.8	3.19	4.43
pt 45	3	4	10.0	10.0	2.7	25	1.0	3.7	2.83	4.47
pt 47	3	4	10.0	10.0	3.0	25	1.0	4.0	2.55	4.14
pt 49	3	4	10.0	10.0	1.6	25	1.0	2.6	4.78	6.37
pt 51	3	4	10.0	10.0	2.7	25	1.0	3.7	2.83	4.47
pt 53	6	4	10.0	10.0	1.8	25	1.0	2.8	2.14	2.96
pt 55	3	4	10.0	10.0	1.7	25	1.0	2.7	4.50	6.13
pt 57	3	4	10.0	10.0	1.5	25	1.0	2.5	5.10	6.62
pt 59	3	4	10.0	10.0	0.9	25	1.0	1.9	8.50	8.71
pt 61	3	4	10.0	10.0	1.1	25	1.0	2.1	6.96	7.88
pt 63	3	4	10.0	10.0	1.6	25	1.0	2.6	4.78	6.37
pt 65	3	4	10.0	10.0	0.8	25	1.0	1.8	9.57	9.20
pt 67	3	4	10.0	10.0	1.5	25	1.0	2.5	5.10	6.62
pt 69	3	4	10.0	10.0	0.2	25	1.0	1.2	38.27	13.79
	 	 	t		- · · -		 			

Minimum = 1.31 2.03 57.34 20.68 Maximum = Average = 5.60 5.81

Notes:

(6) For load conditions see Report text.
(7) Minimum acceptable factor of safety required of 1.3 for first-time failures based on BS: 6031:1981 Code of practice for Earthworks.

⁽¹⁾ Assuming a bulk unit weight of peat of 10 (kN/m³)
(2) Assuming a surcharge equivalent to fill depth of 1.0m.
(3) Slope inclination (β) based on site readings and contour survey plans of site.
(4) FoS is based on slope inclination and shear test results obtained from published data.


⁽⁵⁾ Peat depths based on probes carried out by FT.

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX D

Methodology for Peat Stability Risk Assessment

Methodology for Peat Stability Risk Assessment

A peat stability risk assessment was carried out for each of the main infrastructure elements at the proposed wind farm development. This approach takes into account guidelines for geotechnical/peat stability risk assessments as given in PLHRAG (2017) and MacCulloch (2005). The degree of risk is determined as a Risk Rating (R), which is the product of probability (P) and impact (I). How these factors are determined and applied in the analysis is described below.

The main approaches for assessing peat stability include the following:

- (a) Geomorphological
- (b) Qualitative (judgement)
- (c) Index/Probabilistic (probability)
- (d) Deterministic (factor of safety)

Approaches (a) to (c) listed above would be considered subjective and do not provide a definitive indication of stability; in addition, a high level of judgement/experience is required which makes it difficult to relate the findings to real conditions. FT apply a more objective approach, the deterministic approach. As part of FT's deterministic approach, a qualitative risk assessment is also carried out taking into account qualitative factors, which cannot necessarily be quantified.

Probability

The likelihood of a peat failure occurring was assessed based on the results of both the quantitative results of stability calculations (deterministic approach using factors of safety) and the assessment of the severity of several qualitative factors which cannot be reasonably included in a stability calculation but nevertheless may affect the occurrence of peat instability.

The qualitative factors used in the risk assessment are outlined in Table A and have been compiled based on FT's experience of assessments and construction in peat land sites and peat failures throughout Ireland and the UK.

Table A: Qualitative Factors used to Assess Potential for Peat Failure

Qualitative Factor	Type of Feature/Indicator for each Qualitative Factor (1)	Explanation/Description of Qualitative Factor		
	No	Based on site walkover observations. Sub peat water flow generally occurs		
	Possibly	in the form of natural piping at the base of peat. Where there is a constriction or blockage in natural		
Evidence of sub peat water flow	Probably	pipes a build-up of water can occur at the base of the peat causing a		
	Yes	reduction in effective stress at the base of the peat resulting in failure; this is particularly critical during periods of intense rainfall.		

Qualitative Factor	Type of Feature/Indicator for each Qualitative Factor ⁽¹⁾	Explanation/Description of Qualitative Factor			
	Dry	Based on site walkover observations.			
Evidence of surface	Localised/Flowing in drains	The presence of surface water flow indicates if peat in an area is well			
water flow	Ponded in drains	drained or saturated and if any additional loading from the ponding of			
	Springs/surface water	surface water onto the peat is likely.			
	No				
Evidence of previous	In general area	Based on site walkover observations. The presence of clustering of relict failures may indicate that particular			
failures/slips	On site	pre-existing site conditions predispose a site to failure.			
	Within 500m of location	predispose a site to failure.			
	Grass/Crops	Based on site walkover observations. The type of vegetation present indicates if peat in an area is well drained, saturated, etc. Vegetation that indicates wetter ground may also indicate softer underlying peat			
Type of vegetation	Improved Grass/Dry Heather				
Type of vegetation	Wet Grassland/Juncus (Rushes)				
	Wetlands Sphagnum (Peat moss)	deposits.			
	Concave	Based on site walkover observations			
General slope characteristics	Planar to concave	Slope morphology in the area of the infrastructure location is an important			
upslope/downslope from infrastructure	Planar to convex	factor. A number of recorded peat failures have occurred in close			
location	Convex	proximity to a convex break in slope.			
Evidence of very	No	Based on inspection of exposures in general area from site walkover. Several reported peat failures identify			
soft/soft clay at base of peat	Yes	the presence of a weak layer at the base of the peat along which shear failure has occurred.			
Evidence of mechanically cut peat	No	Based on site walkover observations. Mechanically cut peat typically cut using a 'sausage' machine to extract			

Qualitative Factor	Type of Feature/Indicator for each Qualitative Factor ⁽¹⁾	Explanation/Description of Qualitative Factor		
	Yes	peat for harvesting. Areas which have been cut in this manner have been linked to peat instability. The mechanical cuts can notably reduce the intrinsic strength of the peat and also allow ingress of rainfall/surface water.		
	No	Based on site walkover observations. Quaking/buoyant peat is indicative of highly saturated peat, which would		
Evidence of quaking or buoyant peat	Yes	generally be considered to have a low strength. Quaking peat is a feature on sites that have been previously linked with peat instability.		
	No	Based on site walkover observations. Bog pools are generally an indicator of areas of weak, saturated peat. Commonly where there are open		
Evidence of bog pools	Yes	areas of water within peat these can be interconnected, with the result that there may be sub-surface bodies of water. The presence of bog pools have been previously linked with peat instability.		
Other	Varies	In addition to the above features/ indicators and based on site recordings the following are some of the features which may be identified: Excessively deep peat, weak peat, overly steep slope angles, etc.		

Note (1) The list of features/indicators for each qualitative factor are given in increasing order of probability of leading to peat instability/failure.

It should be noted that the presence of one of the qualitative factors alone from Table A is unlikely to lead to peat instability/failure. Peat instability/failure at a site is generally the combination of a number of these factors occurring at the same time at a particular location. The probability rating assigned to the quantitative and qualitative factors is judged on a 5-point scale from 1 (indicating negligible or no probability of failure) to 5 (indicating a very likely failure), as outlined in Table B.

Table B: Probability Scale

Scale	Factor of Safety	Probability			
1	1.30 or greater	Negligible/None			
2	1.29 to 1.20	Unlikely			
3	1.19 to 1.11	Likely			
4	1.01 to 1.10	Probable			
5	≤1.0	Very Likely			

Scale	Likelihood of Qualitative Factor leading to Peat Failure	Probability of Failure
1	Negligible/None	Least
2	Unlikely	
3	Probable	
4	Likely	
5	Very Likely	Greatest

Impact

The severity of the risk is also assessed qualitatively in terms of impact. The impact of a peat failure on the environment within and beyond the immediate wind farm site is assessed based on the potential travel distance of a peat failure. Where a peat failure enters a watercourse, it can travel a considerable distance downstream. Therefore, the proximity of a potential peat failure to a drainage course is a significant indicator of the likely potential impact.

The risk is determined based on the combination of hazard and impact. A qualitative scale has been derived for the impact of the hazard based on distance of infrastructure element to a watercourse (Table C).

The location of watercourses is based on topographic maps and supplemented by site observations from walkover survey. Note that not all watercourses are shown on maps.

Table C: Impact Scale

Scale	Criteria	Impact
1	Proposed infrastructure element greater than 150m of watercourse	Negligible/None
2	Proposed infrastructure element within 150 to 101m of watercourse	Low
3	Proposed infrastructure element within 100 to 51m of watercourse	Medium

4	Proposed infrastructure element within 50 m of watercourse	High
5	Proposed infrastructure element within 50 m of watercourse, in an environmentally sensitive area	Extremely High

Risk Rating

The degree of risk is determined as the product of probability (P) and impact (I), which gives the Risk Rating (R) as follows:

The Risk Rating is calculated from: $R = P \times I$

Due to the 5-point scales used to assess Probability and Impact, the Risk Rating can range from 1 to 25 as shown in Table D.

Table D: Qualitative Risk Rating

	Probability									
		1	2	3	4	5				
	5	5	10	15	20	25				
Impact	4	4	8	12	16	20				
<u> </u>	3	3	6	9	12	15				
	2	2	4	6	8	10				
	1	1	2	3	4	5				

Risk Rating & Control Measures									
High: avoid working in area or significant control measures required									
11 to 16	Medium: notable control measures required								
5 to 10	Low: only routine control measures required								
1 to 4	Negligible: none or only routine control measures required								

The risk rating is calculated individually for each contributory factor. Control measures are required to reduce the risk to at least a 'Low' risk rating. The control measures in response to the qualitative risk ratings are included in the peat stability risk registers for each main infrastructure element in Appendix B.

The risk rating is calculated individually for each contributory factor. Control measures are required to reduce the risk to at least a 'Tolerable' risk rating

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

APPENDIX E

Ground Investigation Information (IDL, 2021)

IRISH DRILLING LIMITED

LOUGHREA, CO. GALWAY, IRELAND

CONTRACT DRILLING SITE INVESTIGATION

Phone: (091) 841 274 Fax: (091) 847 687

email: <u>info@irishdrilling.ie</u>

SHESKIN WIND FARM

SITE INVESTIGATION CONTRACT FACTUAL REPORT

MKO, Tuam Road, Galway. H91 VW84 Fehily Timoney & Company, Consulting Engineers, Singleton's Lane, Bagenalstown, Carlow.

	Prepared by	Approved by	Rev. Issue Date:	Revision No.
	Ronan Killeen	Declan Joyce	27 th April 2022	21 _MO_111/01
<u>Signature</u>				

Directors: EMILY STANLEY, DECLAN JOYCE, B.E., M. Eng. Sc., C.Eng., M.I.E.I., RONAN KILLEEN, B.E., C.Eng., M.I.E.I., (Secretary)

Operations Manager: MICHAEL MAHON Registered Office: OLD GALWAY ROAD, LOUGHREA, CO. GALWAY Registered No. 379801

FOREWORD

The trial pit records have been compiled from an examination of the samples by a Geotechnical Engineer and from the Drillers' descriptions.

The report presents an opinion on the configuration of the strata within the site based on the trial pit results. The assumptions, though reasonable, are given for guidance only and no liability can be accepted for changes in conditions not revealed by the trial pits.

The fieldwork was carried out in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations with precedence given to IS EN 1997-2 where applicable.

Contents:

1.0 Introduction

2.0 The Site & Geology

3.0 Fieldwork

4.0 Laboratory Testing

Book 1 of 1

Appendix 1 Trial Pit Records

Appendix 2 Laboratory Test Results

Appendix 3 Photographs (Trial Pits)

Appendix 4 Site Plan

Appendix 5 AGS Data

1.0 Introduction.

Irish Drilling Ltd. (IDL) was instructed by Fehiliy Timoney & Partners, Consulting Engineers, on behalf of MKO, to carry out a site investigation at the site of the proposed Sheskin Wind Farm Project.

This site investigation was carried out to provide detailed factual geotechnical information of the underlying ground conditions at the location of the proposed works.

The fieldwork commenced on November 1st 2021 and was completed on November 2nd 2021.

2.0 Site & Geology

The site is located at Bellacorrick, County Mayo.

The site is agricultural in nature and the fieldwork was carried out predominantly on Coillte lands with dense forestation and/or fallen trees in place.

Weather conditions in general were quite variable with the majority of the fieldwork carried out over a typical winter period in Ireland.

Geological Survey maps of the area indicate that the site is underlain by Siltstone, Sandstone and Limestone Rock Formations.

A Site Plan, prepared by the client's representatives to show approximate fieldwork locations, is included with this report.

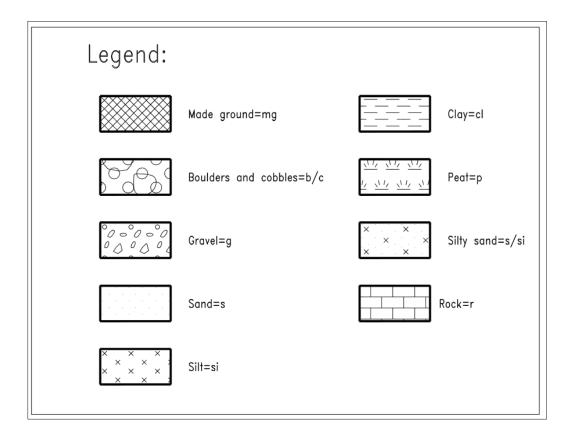
3.0 Fieldwork.

The following plant was mobilised to site to carry out fieldwork operations:

1nr Hitachi 120 Wide-Tracked Excavator.

Fieldwork carried out to date has included the following:

Twelve trial pits were excavated on site using a tracked excavator.


The pits were logged and photographed by an Engineer with observations made on ground conditions, pit stability, water ingress and services encountered.

Small and bulk disturbed soil samples were recovered at each change in strata and returned to the laboratory and presented for testing.

The pits were excavated to depths ranging from 0.90m to 4.10m below ground level.

The following Key Legend Table details the symbology used on the engineering logs to describe ground conditions encountered:

Ground conditions encountered during the completion of the fieldwork were typical and as expected for this region and predominantly consisted of Peat overlying Glacial Tills.

The Glacial Tills in general consisted of silty sands and gravels and/or slightly gravelly sandy silt with cobbles and boulders.

Soft brown fibrous peat was also encountered in many of the trial pits at depths ranging from 2.30m to 3.20m below ground level.

For detailed descriptions of the ground conditions encountered please refer to the engineering logs included as Appendix 1 to this report.

The fieldwork was carried out in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations with precedence given to IS EN 1997-2 where applicable.

The trial pit locations were set out on site using a Garmin Handheld GPS Surveying Unit and using co-ordinates as received from the client's representatives.

All fieldwork co-ordinates are reported to Irish National Grid (ING).

4.0 Laboratory Testing

Representative samples recovered from the boreholes were scheduled for testing in the laboratory.

The test schedules were prepared by the Client's Engineer and included some or all of the following tests on disturbed soil samples:

- * Moisture Content.
- * Atterberg Limits.
- * Particle Size Distribution.
- * Chemical (pH, Sulphate, Chloride).
- Compaction.

The records of these laboratory tests are included as Appendix 2 of this factual report.

The soil descriptions as noted on the trial pit logs are in general visual descriptions as observed and logged by our Engineers and are described in accordance with IS EN 1997-2 and BS5930, 2015 Code of Practice for Site Investigations.

Soils descriptions (cohesive or otherwise) are also initially assessed based on the texture and 'feel' of the soil materials as witnessed by our Geotechnical Engineers and in accordance with IS EN 1997-2 and BS5930.

Where laboratory classification tests have been carried out on soil or rock samples then these visual descriptions have been amended accordingly to take into account the results of these classification tests.

The records of all fieldwork, laboratory test results and photographs are included in the appendices of this Factual Report.

Ronan Killeen Ronan Killeen Chartered Engineer Irish Drilling Limited April 27th 2022

Appendix 01 Trial Pit Records

				n Wind Far	m								TRIALPIT: T	P-01
	CATION IENT: C									Co-ord	inatası		Sheet 1 of 1 Rig: Hitachi 120	Rogmaster
	GINEER:									E 494,18		24,417.0	Rev: FINAL	Dogmuster
Gro	und level: r	n O.D											DATE: 1.11.21	
GROUNDWATER Water strikes: Rose to after: 1st: 3.10m 20min 2.90m 2nd: 3rd:						PIT :	DIREC DIME GGED	NSION	l: 180-36 l: 1.00 ° DK	60 * 4.50m _E		50 B	Shoring/Support: Stability: Pit uns	N/A table.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	LEGEND Elevation M O.D. Depth (m)							
-0								0.10				vith low cobbl	e content.	
-1 -2 -		1	D 1	0.50-1.00 2.00-2.50				0.10	Soft bro	wn fibrous P	PEAT.			
-3		↓				<u> </u>		3.10						
		*	В 3 В 2 О 4	3.20-3.50 3.50-4.00		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$			Grey sli high col	ightly silty me bble content.	edium SANI Cobbles are	O and subroun rounded to su	ded to subangular mediu brounded of grey schist.	m GRAVEL with
-4						850 x 850 x		4.00						
						END			TP term	ninated at 4.0	0m bgl.			
<u> </u>	narks: I	ngress	of surfac	L ce water. Ingre ovided by clier	ss of war	ter at 3.	10m bgl.	TP back	kfilled wit	h arisings.				Scale:
<u> </u>		_ 014	PI	of ener	Spread			Inial	. dw:11	ing LTI	n			1:25
- S	W.							11151	ı ul III	шу ГЛ	U			Fax

PROJECT: SSE Sheskin Wind Farm LOCATION: Co Mayo									TRIALPIT: TP-02 Sheet 1 of 1						
	IENT: Co						Co-ordinates:					Rig: Hitachi 120 Bogmaster			
1	GINEER:										24,521.0	Rev: FINAL			
Gro	und level: n	ı O.D										DATE: 2.11.21			
1st: 3.20m 20min 3.18m PIT							DIREC DIME GGED 1	NSION	i: 000-1 v: 1.00 DK	80 4.50m D	1 1	Shoring/Support: N/A Stability: Pit moderately stable.			
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)							
-0								0.20		IL: Brown peaty CLAY.					
						<u> </u>			Soft bro H2 B1	own fibrous PEAT. F2 R1 W0 TV1 TH0 A1.					
+						717 7									
-						1, 11,									
L						<u> </u>									
						71 7									
-1			- P1	1.00-1.50		1, 11,									
-						<u> </u>									
						77 7									
			Ц			1, 11,									
†						<u> </u>									
-						71/7									
-2				2.00.2.50		1, 11,									
			33 B 2	2.00-2.50		<u> </u>	-								
†			88888			71 7									
-			2020203			1, 11,									
			<u> </u>			<u> </u>									
						717 7									
t						1/ 1/									
-3						<u> </u>									
2 -		⊉				<u> </u>		3.20		W. C. GAND.	1.1.	11 contrary			
						80 :00 2/2:			Grey si mediun	ity fine SAND and subroun cobble content. Cobbles	inded to subang are rounded to	gular coarse grey schist GRAVEL with subrounded of grey schist.			
<u> </u>			<u>হ</u> ্যB 3	3.50-4.00		\$0 \$0 \$0.9									
5-			700000	1.50 1.00		8 7. 6 8 7. 6									
* -			aasaa			\$ 30°									
			SOSOSOS			1800 × 6									
WENGES SHESHIN WENE WAS THE THOUGHT AND A ZOZIGES INSHIDELED TO THE THOUGHT AND A ZOZIGES TO THE THOUGHT AND A ZOZIGE TO THE THOUGHT AND A ZOZIGE TO THE THOUGHT			1231			BOX END		4.10	TD torm	ninated at 4.10m bgl.					
-						 END			i r tern	imateu at 4.10m bgi.					
ž -															
5															
<u>-</u>															
∮ 8 - 5															
Rer	narks: L	ngress To-ord	of water	at 3.20m bgl. ovided by clien	TP back at represe	filled w entative	ith arisir	ngs.	•			Scale:			
KIA I	4							Trick	ı drill	ing LTD		Ph.			
4 60	8							11121	. WIIII	mg LIV		Fax			

	DJECT: CATION			1 Wind Far	m							TRIALPIT: T. Sheet 1 of 1	P-03
CLI	ENT: Co	oillte	!							Co-ordinat E 493,942.0	tes: N 825,337.0	Rig: Hitachi 120 Rev: FINAL	Bogmaster
Grou	ınd level: n	n O.D.								,		DATE: 1.11.21	
	OUNDW r strikes: dry		R se to after:			PIT I	DIREC DIME GED 1	NSION	V: V: 1.00 DK	* 4.10m D	4.10	Shoring/Support: Stability: Pit unst collapse.	N/A able. Sidewall
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)			DESCRI	PTION	
-0									TOPSO	OIL: Brown peaty (CLAY.		
-			-D1	0.50-1.00				0.30	Soft bro H3 B1	own fibrous PEAT F2 R1 W1 TV1 TI	: Н1 А1.		
-1 - -			B 2	1.50-2.00									
-2 -			<i>SOSOOOSOO</i> S					2.30	high co	bble content and r	nedium boulder conte	ubangular coarse grey sc nt. Cobbles are rounded	hist GRAVEL with to subrounded of
1 1977 1977			and a second sec	2.50-3.00					grey sc	hist. Boulders are	rounded to subrounde	d of grey schist.	
Rem 1 AMERICAN MENDEN WE NEED TO A SUCCESSION OF SUCCESSIO						end END		3.70	TP term	ninated at 3.70m b	gl.		
Rem	narks: T	TP dry Co-ord	on excav	ation. TP back ovided by clier	filled w	ith arisin	ngs.						Scale: 1:25
Y MAN	6							Irisł	h drill	ing LTD			Ph. Fax

	DJECT:			n Wind Far	m									TRIALPIT: T Sheet 1 of 1	P-04
CLI	ENT: Co	oillte	:							Co-oro E 493,0		s: N 825,509.	.0	Rig: Hitachi 120 Rev: FINAL	Bogmaster
Grou	nd level: n	n O.D								1				DATE: 1.11.21	
	OUNDW. r strikes: 2.00m	Ros	K se to after: min	1.96m		PIT 1	DIREC DIMEN GED 1	NSION	: 270-0 l: 1.00 DK	90 * 2.70m	D	2.70 C	B	Shoring/Support: Stability: Pit unst	N/A table.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)				DES	SCRII	PTION	
-0 - - - -1 - - - - -		12	• 3 2 2 (SECONDENSION OF SECONDENSION OF SECONDENSION OF SECOND OF	0.50-1.00 1.00-1.50 2.00-2.50				2.50	Grey v with hi subang	gh cobble co ular of grey	lium SAI ontent an schist. B	ND and subro	oulder co	to subangular coarse gro ontent. Cobbles are subi to subrounded of grey s	rounded to chist.
- 3 - 4 - 5 Rem													-p -1 (, Januari contapse	
Rem	arks: L	ngress Co-ord	of surfac	ce water. Ingre ovided by clier	ss of wa	ter at 2.0 entative	00m bgl.	TP back	filled wi	th arisings.					Scale:
L Daniel								Irisł	ı dril	ing LT	D				Ph. Fav
S										<u></u>					Fax

PR	OJECT:	SSE	Sheskii	n Wind Far	m						TRIALPIT: T	P-05
	CATION									T	Sheet 1 of 1	
1	IENT: C									Co-ordinates:	Rig: Hitachi 120	Bogmaster
	GINEER					1				E 493,076.0 N 825,791		
	und level: 1					<u> </u>					DATE: 2.1.21	
	er strikes: dry		se to after:			PIT	DIRE(DIME) GGED 1	NSION	: 000-1 l: 1.00 DK	80 * 4.20m D	Shoring/Support: Stability: Pit unst collapse.	N/A able. Sidewall
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)		DE	SCRIPTION	
-0			9 2						TORG	MI. Dansva mosty CLAV		
- - - -1			8 1 8 1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0.50-1.00 1.50-1.90		**************************************		0.10		oll: Brown peaty CLAY. Ey slightly gravelly sandy SILT w. Sand is fine. Gravel is subround to subrounded of grey schist. Be	ith high cobble content and med led to subangular coarse of grey oulders are rounded to subround	ium boulder schist. Cobbles are ed of grey schist.
			<i>anananana</i>			× × × × × × × × × × × × × × × × × × ×		1.00				
-2		-	[3]			END	1	1.90	TP terr	ninated at 1.90m bgl. Unable to k	eep TP open - sidewall collapse.	
TE AVE INCES STEEDING WE NEW TIPS THE THOUGH AZIZING INSTITUTE. TO A TO												
Rei	marks:	ngress Co-ord	of surfac	ce water. TP ba	ckfilled it repres	with ar entative	isings.					Scale:
¥ 10m	t.							Inial	. dv:11	ing LTD		1:25 Ph.
± 4 🖦	*							11 121	ı urill	ing LIV		Fax

	OJECT:			n Wind Far	m					TRIALPIT: TP-06 Sheet 1 of 1
	ENT: CO								Co-ordinates: E 493,053.0 N 826,156.0	Rig: Hitachi 120 Bogmaster Rev: FINAL
Grou	GINEER: und level: n	n O.D							_ :20,0000 11 020,1000	DATE: 1.11.21
	OUNDW. er strikes: 1.50m	Ros	R se to after: min	1.45m		PIT 1	DIRE(DIME) GGED]	NSION	: 270-090 : 1.00 * 3.60m DK	Shoring/Support: N/A Stability: Pit unstable.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DES	CRIPTION
0								0.20	TOPSOIL: Soft brown peaty CLAY.	
- - -1		1	ания в 1 — — — — — — — — — — — — — — — — — — —	0.50-1.00		© Q Q 080 Q 0 Q Q		0.20	Grey silty coarse SAND and subrounded thigh cobble content and high boulder cont schist. Boulders are rounded to subrounde	o subangular coarse grey schist GRAVEL with ent. Cobbles are rounded to subrounded of grey d of grey schist. Sand is fine and medium.
_		<u> </u>	<i>3888</i>			END END		1.50	TP terminated at 1.50m bgl. Unable to kee water.	ep TP open - sidewall collapse due to ingress of
-2 - - - -3 - -										
-5 Ren	narks: I	ngress Co-ord	of surfac	be water. Ingre- ovided by clien	ss of wa	ter at 1.:	50m bgl.		filled with arisings.	Scale: 1:25 Ph. Fax

DD/	TECT:	CCE	Ch aal-	, W;J F.						TRIALPIT: TP-07
	DJECT: CATION			n Wind Far	m					TRIALPIT: TP-07 Sheet 1 of 1
	ENT: C								Co-ordinates:	Rig: Hitachi 120 Bogmaster
	GINEER								E 493,527.0 N 826,492.0	
Grou	ınd level: r	n O.D								DATE: 2.11.21
	OUNDW er strikes:		R se to after:			PIT	DIREC	CTION	: 000-180	Shoring/Support: N/A Stability: Pit unstable.
1st: 2nd:	dry	1403	c to arter.			PIT	DIME GED 1	NSION	I: 1.00 * 3.80m D	B 1.00
3rd:				1		Loc	I GED	Б 1.	C	<u> </u>
Depth (m)	e te	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DES	CRIPTION
	Date	₹	Sa	De	In-s Tes	LE	EK	De		
-0								0.10	TOPSOIL: Brown peaty CLAY.	
						\$ \\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \			Grey very silty medium SAND and subrounth high cobble content. Cobbles are rou	unded to subangular coarse grey schist GRAVEL nded to subangular of grey schist.
						\$				
			1531B 1	0.50-1.00						
+ 1			ж 2000 година	0.30-1.00		\$ 15 C				
			<i>8888</i> 8			9 ×				
			7505050			80.×6				
-1			XX			END		1.00	TP terminated at 1.00m bgl. Unable to kee	ep TP open - sidewall collapse due to ingress of
									water.	
- 1										
↓										
1										
-2										
+ $ $										
1										
3										
2 101 2										
JRL.G										
- BB-										
2021.										
00 4 4 4										
-4 -4										
IPS F										
¥ -										
ESKII										
si si										
§ -5										
TRIAL PIT VANE & WE RISES SHESKIN WF NEW TPS FILE 1 NOV4 2021 GPJ IRISHDRI. GDT 274/22 Bell C-	narks: I	ngress	of surfac	e water. TP batering the second secon	ackfilled	with ar	isings.			Scale:
E F		J-oid	mano pre	Trace by cher	repres	auve	•			1:25
ž Militaria	ħ.				Irish drilling LTD Ph. Fax					

PR	OJECT:	SSE	Sheski	n Wind Far	m						TRIALPIT:	TP-08
	CATION										Sheet 1 of 1	100 D
	IENT: C									Co-ordinates: E 493,297.0 N 826,935	_	120 Bogmaster
	GINEER					Ι				12 475,277.0 11 020,755		
	und level: 1							~~~		3.90	DATE: 2.11.21 Shoring/Supp	nort: N/A
Wat 1st:	er strikes: dry	Ro	se to after:			PIT PIT	DIRE(DIME)	TTION NSION	: 270-0 I: 1.00	90 A * 3.90m D	Shoring support of the stability: Pit B 1.00	moderately stable.
2nd: 3rd:						LOG	GED 1	BY:	DK	С С	B 1.00	
(E)			es	Depth (m)	In-situ Vane Tests		Elevation m O.D.	Depth (m)		DF	SCRIPTION	
Depth (m)	Date	Water	Samples		situ	LEGEND	evat O.L	pth			SCRII IION	
	<u> </u>	<u> </u>	Sa	Ď	Te	=	田田	Ď				
-0								0.10		IL: Brown peaty CLAY.		
-						% .X			Grey v	ery silty medium SAND and subr gh cobble content and high bould hist. Boulders are rounded to sub	ounded to subangular coars ler content. Cobbles are rou	e grey schist GRAVEL nded to subrounded of
						.0 %			grey sc	hist. Boulders are rounded to sub	rounded of grey schist.	
				0.50.1.00		Q0. 8						
-			ваа В 1	0.50-1.00		(A) (
			8888			19 3°						
			202020			% = 6						
-1			2000			% C						
						ŽŽŽ		1.10	Possibl	e weathered rock.		
									Recove	red as angular to subangular grav	el and cobble sized clasts o	of brown schist.
-												
			₩B 2	1.50-1.80								
			8888									
-			222			END		1.80	TP terr	ninated at 1.80m bgl. Obstruction	as possible rock.	
-2												
-												
-												
1 .												
-3												
3												
4												
-												
-												
101												
4												
<u> </u>												
_												
-5												
<u>'</u>	narks:	TP dry	on excav	ation. TP back	filled w	I ith arisi	ngs.					Scale:
		∪o-ord	unates pro	ovided by clier	it repres	entative	·.					1:25
DAY.	The state of the s							Irisl	ı dril	ing LTD		Ph. Fax

1	DJECT: CATION			n Wind Far	m							TRIALPIT: TI	P-09
CLI	ENT: Co	oillte								Co-ordinates: E 493,383.0	: N 827,489.0	Rig: Hitachi 120 Rev: FINAL	Bogmaster
Grou	ınd level: n	n O.D.								1		DATE: 2.11.21	
	OUNDW. er strikes: 0.90m	Ros	R se to after: min	0.70m		PIT 1	DIREC DIMEN GED 1	NSION	: 270-(l: 1.00 DK	990 * 3.70m _D	3.70 B	Shoring/Support: Stability: Pit unsta	N/A able.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)			DESCRI	PTION	
-0								0.20		OIL: Brown peaty CLA			
- -		<u>↓</u>	B 1	0.50-0.90				0.90	Soft br conten Cobble schist.	own slightly gravelly it. Sand is fine to medies are angular to subar	sandy SILT with hi ium. Gravel is angu ngular of grey schis	gh cobble content and m lar to subangular coarse o t. Boulders are angular to	edium boulder of grey schist. subangular of grey
-1		<u> </u>	[S]			END		0.90	TP teri	ninated at 0.90m bgl.	Obstruction as pos	sible rock.	
Ren	narks: I	ngress Co-ord	of water	at 0.90m bgl. ovided by clier	TP back	filled w entative	ith arisin	ıgs.					Scale:
	k		•	•				Irisł	ı dril	ling LTD			Ph. Fay
	9							11131	. WILL	mg 1111			Fax

L C	OCATION LIENT: (N: Co Coillte	Mayo	n Wind Far	·m				Co-ordinates: E 493,797.0 N 827,540.0	TRIALPIT: TP-10 Sheet 1 of 1 Rig: Hitachi 120 Bogmaster Rev: FINAL
Gi W 1s 21	NGINEER round level: ROUNDV /ater strikes: t: dry nd: rd:	m O.D VATE).			PIT :	DIREC DIME GGED	NSION	: 180-360	DATE: 2.11.21 Shoring/Support: N/A Stability: Pit unstable.
Denth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)	DESCR	IPTION
-0 1 2 37##Z TOSTAN WALLET TO THE TOTAL TOT			В	1.00-1.50				2.20	TOPSOIL: Brown peaty CLAY. Soft brown slightly gravelly very sandy CLAY is rounded to subrounded coarse of grey schist. schist. 1.50m; grey sandy silt. TP terminated at 2.20m bgl. Unable to progress.	s TP open due to ingress of surface water.
R	emarks:	Ingress Co-ord	s of surfaction	ce water. TP ba ovided by clier	ackfilled nt repres	with ar entative	isings.	Iricl	n drilling LTD	Scale: 1:25 Ph. Fax

				n Wind Far	m									TRIAI		TP-1	1
	CATION IENT: C									Co-	ordinate	es:		Sheet Rig: H	1 of 1 Iitachi 1	20 Bog	master
	GINEER:										4,907.0	N 827,1	15.0	Rev: I			,
Gro	und level: n	n O.D												DATE:	1.11.21		
		Ros	K se to after: min	0.40m		PIT :	DIREC DIME GGED 1	NSION	i: 270-0 i: 1.00 DK	90 * 4.10r	n _D		B	Sho Stab 1.00 colla	ring/Suppo pility: Pit u apse.	ort: N/A unstable.	Sidewall
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)				Γ	DESCRI	PTION			
-0		\vdash				==		0.10			vn peaty C						
- - -		<u></u>	- D1	0.50-1.00		77 7 7 77 7 7 77 7 7 77 7 7 77 7 7 77 7					ous PEAT. 1 TV0 TH						
- - - -2			18 2 18 2 18 2 18 2 18 2 18 2 18 2 18 2	1.50-2.00		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7											
- - -			п винения	2.50-2.80			-	2.50	Light b	orown me	dium SAN	ND and subr	ounded to	subangula	ar coarse G	GRAVEL.	
-3			<u>β</u> 4 () () () () () () () () () (3.00-3.50				2.80	Gravel	is subrou	y gravelly inded to su rey schist.	ıbangular c	CLAY wit oarse of gr	th high col	bble contei Cobbles ar	nt. Sand i re rounde	is medium. d to
4 5						END		3.70	TP term	ninated a	t 3.70m bg	<u>يا</u> .					
Rer	narks: I	ngress Co-ord	of water	at 0.50m bgl. ovided by clien	TP back it represe	filled w entative	rith arisir	igs.								Sc	cale:
<u> </u>		_ 014	pro		pros			Tu:~1	. 4.:11	ine T	TD					Ph.	1:25
all the	Car							irisi	ı urlll	ling L	ıν					Fax	

1	DJECT: CATION			n Wind Far	m								TRIALPIT: 7 Sheet 1 of 1	ГР-12
CLI	ENT: C GINEER:	oillte								Co-ordir E 495,304		6,870.0	Rig: Hitachi 12 Rev: FINAL	0 Bogmaster
GRO	nd level: r OUNDW r strikes: 1.20m	ATE Ros		1.00m		PIT	DIREC DIMEN GED 1	NSION	N: 000-1 N: 1.00 DK	80 * 3.70m _D	3.70 A		DATE: 1.11.21 Shoring/Suppor Stability: Pit un	t: N/A stable.
Depth (m)	Date	Water	Samples	Depth (m)	In-situ Vane Tests	LEGEND	Elevation m O.D.	Depth (m)				DESCRI	PTION	
0								0.20	TOPSO	OIL: Brown pea	ty CLAY.			
-		1 2	D 1	0.50-1.00		*		1.00	Soft lig various	ght grey slightly s lithologies.	gravelly sar	ndy SILT. Gra	avel is subrounded to s	ubangular medium of
-1 - - - -		‡	В 2 <i>Специализация</i>	1.50-2.00				1.00	Soft gr conten are rou	ey slightly grav. t. Sand is coarse nded to subrour	elly very san e. Gravel is s nded of grey	dy CLAY wi subrounded to schist. Bould	th medium cobble conto subangular coarse of ders are rounded to sub	tent and low boulder grey schist. Cobbles rounded of grey schist.
3			<u>สองเอเลเลเลเลเลเลเลเลเลเลเลเลเลเลเลเลเลเล</u>	2.50-3.00				2.20						
-3						END		3.20	TP tern	minated at 3.20i	m bgl. Obstr	uction as bou	llders.	
F Rem	narks: I	ngress	of water	at 1.20m bgl. ovided by clier	TP back	filled w	ith arisin	ngs.						Scale:
	`	_ 514	PI	57 51101				Irisł	h dril	ling LTD)			1:25 Ph. Fax

Appendix 02 Laboratory Test Results

Project ID	2021MO111
Project Name	SSE Sheskin Wind Farm
Schedule ID	2021MO111 1

Client	Coillte
Due Date	09/11/2021 09:00
Scheduled Date	09/11/2021 09:00

Remarks	

																																		Stre (Effe	ectiv				
		Sampl	le Details					Clas	sifica	ation				(Chem	ical /	/ Con	crete)			Cor	npac	tion		Comp	oressi	bilit	S	tren	gth (1		d)	Stre	ess)	Ro	ck		
Location	Depth (m)	Base Depth	Sample Type	Sample Ref	Date Sampled	Storage	Moisture Content	Atterberg 4 Point	Particle Density by Gas Jar	Particle Density by Small Py	Particle Size Distribution	Hydrometer	Organic Content	Loss On Ignition	Sulphate Total	Sulphate Water Gravimetric	Carbonate Titration	hd	Chloride Content	Chloride Content Acid	Compaction Light	Compaction Heavy	Compaction Vibrating Hamm	Moisture Condition Value	Moisture Condition Relations	CBR	Consolidation	Swelling Pressure Test	Laboratory Vane test	Ring shear Test	Triaxial Quick Undrained	(Specify Cell Pressure) Triaxial UU Multi Stage	Triaxial UU Multi Specimen	Consolidated Drained Triaxis	Consolidated Undrained Tria	Rock Uniaxial compression	Point Load		
TP-01	0.50	1.00	D	1	01/11/21		1																											Ш					
TP-01	2.00	2.50	В	2	01/11/21																													Ш					
TP-01	3.20	3.50	В	3	01/11/21		1																									I	Ш	Д					
TP-01	3.50	4.00	D	4	01/11/21																												Ш	Ш					
TP-02	1.00	1.50	D	1	02/11/21																												Ш	Ш					
TP-02	2.00	2.50	В	2	02/11/21		1																										Ш	\Box					
TP-02	3.50	4.00	В	3	02/11/21		1				1																						Ш	Ш					
TP-03	0.50	1.00	D	1	01/11/21																												Ш	Ц					
TP-03	1.50	2.00	В	2	01/11/21		1																										Ш	Щ		Ш			
TP-03	2.50	3.00	В	3	01/11/21						1																						Ш	Ш					
TP-04	0.50	1.00	D	1	01/11/21		1																										Ш	Ш					
TP-04	1.00	1.50	В	2	01/11/21						1																						Ш	Ш					
TP-04	2.00	2.50	В	3	01/11/21										1	1		1	1															Ш				ALS 21113	ე-85
TP-05	0.50	1.00	В	1	02/11/21		1	1																									Ш	Ш					
TP-05	1.50	1.90	В	2	02/11/21										1	1		1	1															Ш				ALS 21113	ე-85
	0.50	1.00	В	1	01/11/21																											I	$oldsymbol{\Box}$	Ш					
TP-06	1.00	1.50	В	2	01/11/21		1				1																							Ш					
	0.50	1.00	В	1	02/11/21		1				1																							J					
TP-08	0.50	1.00	В	1	02/11/21		1				1											1												Ш					
TP-08	1.50	1.80	В	2	02/11/21																							П						J					
TP-09	0.50	0.90	В	1	02/11/21		1	1																										Ш					
TP-10	1.00	1.50	В	1	02/11/21		1	1																									Π	П					
TP-11	0.50	1.00	D	1	01/11/21		1	1																									\Box	J					
TP-11	1.50	2.00	В	2	01/11/21																												\Box	J					
TP-11	2.50	2.80	В	3	01/11/21																							П					П	ίΤ					
TP-11	3.00	3.50	В	4	01/11/21																												\Box	丁					
TP-12	0.50	1.00	D	1	01/11/21		1	1																				П					П	ίΤ					
TP-12	1.50	2.00	В	2	01/11/21													T		T											Πİ		\Box	П					\neg
TP-12	2.50	3.00	В	3	01/11/21																										Πİ		Π	iΠ					

Scheduled 14 5 0 0 6 0 0 0 2 2 0 0 0 1 0 0 Reported 14.01.22

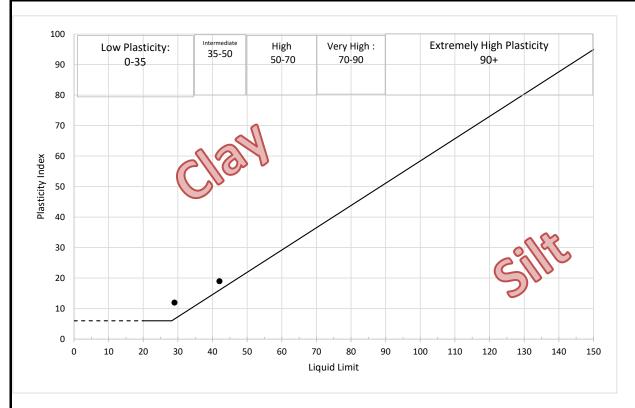
Summary of Classification Test Results

Project Name

2021	//O11	1					SSES	Shesk	kin Win	d Farm					
Hole No.	Ref		mple	Tuno		Soil Description	Dens bulk	ity dry	W	Passing 425µm	LL	PL	PI	Particle density	Remarks
	Kei	Тор	Base	Туре			Mg/m	3	%	%	%	%	%	Mg/m3	
TP-01	1	0.50	1.00	D		Black PEAT.			696.0						
TP-01	3	3.20	3.50	В		Grey gravelly SAND.			19.0						
TP-02	2	2.00	2.50	В		Black PEAT.			861.0						
TP-02	3	3.50	4.00	В		Grey gravelly very silty fine SAND.			22.0	88					
TP-03	2	1.50	2.00	В		Black PEAT.			737.0						
TP-04	1	0.50	1.00	D		Grey gravelly very silty fine and medium SAND.			13.0						
TP-05	1	0.50	1.00	В		Grey slightly gravelly sandy SILT.			15.0	73					NP
TP-06	2	1.00	1.50	В		Grey silty very gravelly fine and medium SAND.			14.0	49					
TP-07	1	0.50	1.00	В		Grey gravelly very silty fine SAND.			14.0	74					
TP-08	1	0.50	1.00	В		Grey very silty SAND and GRAVEL.			11.0	52					
TP-09	1	0.50	0.90	В		Brown slightly gravelly slightly sandy SILT.			21.0	48	29	17	12		CL
TP-10	1	1.00	1.50	В		Grey sandy SILT.			11.0	59					NP
TP-11	1	0.50	1.00	D		Black PEAT.			572.0	89	795	446	349		MEO
TP-12	1	0.50	1.00	D		Grey sandy SILT, sand is fine.			31.0	83	42	23	19		CI
tests perfo	ormed	in acco	rdance v	vith BS	31377:	1990 unless specified othe	rwise								
		ontent, L	L = Liqu			= Plastic Limit, PI = Plasti		(Date F	rinted		Appr	oved	Ву	Table
Density Linear m wd - wat	easure	ment unles	s:	Liquid I 4pt con 1pt - sir	e unless	s: sp - sn	e density nall pyknom s jar	eter	1	4/01/20	22				1 sheet

QC From No: R1

Administrator


Project Name:

Location:

Plasticity (A-Line) Chart Project Number

SSE Sheskin Wind Farm

2021MO111

Abreviations in the remarks column of the Classification Summary Sheet: C = Clay, M = Silt

Plasticity abeviations: L = Low, I = Intermediate = H = High, V = Very High, E = Extremely High.

The letter O is added to the symbol of any material containing a significant proportion of organic material.

Chart taken from BS5930: 2010

Particle Size Distribution Borchole/Phi No. TP-02		1												Job Re	ıf	20	21MO111	
Sile Name	IRIG	34	DRILL	20		PAR	TICL	E SIZE	DIST	ΓRIB	UTIO	N		-				
Specimen Reference Refer	S			D	SSE She	eskin Wi	ind Fa	ırm						Sample	e No.		3	
Test Method BS1377-Part 2:1990, clause 9:2 KeyLAB ID IDL1202111096	s	oil Des	scription)	Grey grav	elly very	silty fir	ne SAND.						Depth,	m		3.50	
CLAY Fine Medium Course Fine Medium Fine Fine Fine Medium Fine Fine Fine Fine Medium Fine Fi									n				m	Sample	е Туре		В	
Sieving	Т	est Me	ethod		BS1377:F	Part 2:199	90, clau	use 9.2						KeyLA	B ID	IDL ²	1202111096	
100 90 90 90 90 90 90 90		-	CLAY	Fin			Coarse	Fine			Coars	se	Fine			COBBLES	BOULDERS	
Sieving Sedimentation Particle Size mm		100																
No. Particle Size Sieving Sedimentation Particle Size Particle Siz		90																
Sieving Sedimentation Particle Size mm		80										\dashv						
Sieving	%	70										-						
Sieving		60							/			\dashv						
Sieving	ige Pa	50										\dashv						
Sieving	rcenta	40																
Sieving	Pe	30										-						
Sieving		20										\dashv						
Sieving Sedimentation Particle Size mm Sieving Particle Size mm Sieving Particle Size mm Sieving Particle Size Mm Sasing Particle Size Sample, g 334 Sample Proportions Sample, g Sample Proportions S		10										\dashv						
Sieving			001		0.0)1		0.1			1			10		100	1000	
Particle Size mm										Parti	cle Size	e m	ım					
Particle Size mm		Signing						Codime	ntation		_							
Sample Proportions		P			1	sing		cle Size			9		Dry M	lass of sa	ample, g	334		
Gravel 5 Sand 63			111111				- ''								3	%		
Society			75		100	0								e				
37.5												8	Sand				63	
Column					100	0						F	ines <0.0	63mm			33	
14											\blacksquare	[c	Frading A	nalveie				
D30 mm			14		100	0							0100		mm			
D10 mm		10 100									_						0.157	
Sheet printed Sheet printed 14/01/2022 12:18 Uniformity Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Curvature Coefficient Remarks Preparation and testing in accordance with BS1377 unless noted below Sheet printed 14/01/2022 12:18 Curvature Coefficient Curv									-		\dashv					+		
1.18												Ū	Jniformity		t			
O.6 91 Remarks		-									_	C	Curvature	Coefficient	t	<u> </u>		
0.425 88 Preparation and testing in accordance with BS1377 unless noted below 0.3 83 0.212 75 0.15 58 0.063 33 Preparation and testing in accordance with BS1377 unless noted below Sheet printed 14/01/2022 12:18									<u> </u>		\dashv	F	Remarks					
0.212 75 0.15 58 0.063 33 Operator Checked Approved Sheet printed 14/01/2022 12:18					88	3						Р	reparation ar	nd testing in a	ccordance with B	S1377 unless no	oted below	
0.15 58 0.063 33 Operator Checked Approved Sheet printed 1 14/01/2022 12:18		-																
Operator Checked Approved Sheet printed 1 Dympna Darcy B Sc. 14/01/2022 12:18																		
Dympna Darcy B Sc 14/01/2022 12:18			0.063		33	3												
Dympna Darcy B Sc 14/01/2022 12:18		Ор	erator		Ch	necked		Аррі	proved					Sheet printed			1	
		Dympna Darcy B.Sc.							Sc.	14/01/2022 12:18								

								Job Ref	202	21MO111	
IRLE	DRILL	1200	PA	ARTICI	LE SIZE DIS	STRIBUTION		Borehole/Pit No.		TP-03	
Si	te Name		SSE Sheskin	Wind Fa	arm			Sample No.		3	
l	oil Descriptio	n	Dark grey very	silty very	gravelly fine SA	ND.		Depth, m		2.50	
	pecimen eference				Specimen Depth		m	Sample Type		В	
Тє	est Method		BS1377:Part 2:	1990, cla	use 9.2			KeyLAB ID	IDL1	202111099	
	CLAY	Fir	SILT le Medium	Coarse		SAND Medium Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS	
	100										
	90										
%	70										
ssing %	60										
Percentage Passing	50										
Percent	40										
	20										
	10										
	0.001		0.01		0.1	1		10	100	1000	
	0.001		0.01		0.1	Particle Size	mm	10	100	1000	
			ving		Sedimentati	on	Drv M	ass of sample, g		511	
	Particle : mm		% Passing		icle Size mm	Passing					
				-			Sample Province Very coarse		%	dry mass 0	
	75		100				Gravel			30	
	63		100				Sand			44	
	50 37.5		100 100	-			Fines < 0.06	53mm		26	
	28		100	1			03 <0.00		<u> </u>		
	20		96				Grading A	nalysis			
	14		93				D100	mm		0.700	
	10		88 82	-			D60 D30	mm	-	0.702	
	6.3		79	-		——	D30	mm mm		0.085	
	3.35	;	75				Uniformity (
	2		70				Curvature 0				
	1.18	l	65								
	0.6	-	58	4			Remarks	d testing in accordance with BS	1377 unless re	ted helow	
	0.425		55 50	-			r reparation di	a costing in accordance with BO	.orr unicss 110	log below	
	0.212		45	1							
	0.15		38								
	0.063	3	26								
	Operator		Checked	i _	Approved		(Sheet printed		1	
				ı	Dympna Darcy B	s.Sc.	14/01/2022 12:18 QC From No:R				

	1									Job Ref	202	21MO111
IRI	145	DRILL	20	PA	RTIC	LE SIZE I	DISTRI	BUTION	1	Borehole/Pit No.	<u> </u>	TP-04
. ' .	ite Na		D	SSE Sheskin	Wind F	arm				Sample No.		2
S	oil De	escription	1	Grey gravelly ve	ery silty	fine and medi	um SANE).		Depth, m		1.00
	pecin					Specimen Depth			m	Sample Type		В
Т	est M	lethod		BS1377:Part 2:	1990, cl					KeyLAB ID	IDL1:	2021110911
		CLAY		SILT			SAND			GRAVEL	COBBLES	BOULDERS
	100		Fin	e Medium	Coarse	e Fine	Medium	Coarse	Fine	Medium Coarse		:
	90	\vdash										
	80	\blacksquare	+									
%	70	\blacksquare										
	60	H										
Percentage Passing	50	H										
rcenta	40											
Pe	30											
	20											
	10	H										
	0 0	.001		0.01		0.1		1		10	100	1000
							Pa	ticle Size	mm			
	Sieving					Sedimen	tation					
	F	Particle S mm		% Passing	Par	rticle Size	% Passi	ng	Dry M	lass of sample, g		391
									Sample Pr		%	dry mass
		75		100					Gravel	G		19
		63 50		100 100		$-\mp$		_	Sand		1	59
		37.5		100					Fines <0.06	63mm		23
		28 20		100 100	-	$ \mp$			Grading A	nalveie	1	
	\vdash	14		100	╢	+			D100	mm		
	10 93								D60	mm		0.316
	6.3 92 5 89							\longrightarrow	D30 D10	mm	 	0.0952
	3.35 86					+		\dashv	Uniformity (Coefficient mm	+	
		2		81					Curvature (
		1.18		77	1				Do			
	\vdash	0.6 0.425		71 66	-				Remarks Preparation an	d testing in accordance with B	S1377 unless no	ted below
	\vdash	0.423		59	1			=	,	<u> </u>		
		0.212		50]							
	-	0.15 0.063		38 23	4							
	<u> </u>	0.063		۷3								
	0	perator		Checked	I	Approved				Sheet printed	1	
						Dympna Daro	cy B.Sc.		14,	/01/2022 12:18	QC From No:R2	

Particle Size Distribution Some Section	1								Job Ref	202	21MO111		
Site Name	IRL	PRILL	700	P	ARTIC	LE SIZE D	ISTRIB	UTION		Borehole/Pit No.		TP-06	
Specimen Reference Refer	s		_	SSE Sheskin	Wind F	arm				Sample No.		2	
Test Method BS1377.Part 2:1990, clause 9.2 ReyLAB ID IDL12021110916 IDL1202111091	S	oil Descriptio	n	Grey silty very	gravelly	fine and mediu	m SAND.			Depth, m		1.00	
Sieving Sedimentation Particle Size mm Dry Mass of sample, g Semple Proportions % dry mass Sand 48 Sand 58 Sand									m	Sample Type		В	
CUN Fine Meditum Coarse Fine Med	T	est Method		BS1377:Part 2	:1990, cl	lause 9.2				KeyLAB ID	IDL12	2021110916	
Sieving		CLAY	Fir		Coarse	e Fine		Coarse	Fine		COBBLES	BOULDERS	
Sieving		100											
Seving													
Sieving													
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 660	% bı												
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 660	Passir						مرا						
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 660	ıntage												
Sieving Sedimentation Particle Size MP Passing MP Passing MP Particle Size MP Passing MP Particle Size MP Passing MP Passing Particle Size MP Passing MP Passing Particle Size MP Passing Perce													
Sieving		20											
Sieving Sedimentation Particle Size mm Dry Mass of sample, g 660		10											
Sieving				0.01		0.1		1		10	100	1000	
Particle Size mm		0.001		0.01		0.1	Partio	le Size	mm	10	100	1000	
Particle Size mm			0:-		П	On diament	40	_					
Sample Proportions % dry mass			Size		Par	rticle Size		,	Dry M	ass of sample, g		660	
The state of the											%	_	
Sand 48		75		100						*		-	
37.5				100									
28													
Carading Analysis D100 mm D60 mm					╂			=	rines <0.06	ooiniii		14	
14					+				Grading Ar	nalysis			
D30 mm 0.175				81					D100				
D10 mm													
3.35 66					\dashv			\dashv				0.1/5	
2 62					+			\dashv					
O.6 53 Remarks Preparation and testing in accordance with BS1377 unless noted below O.3 44 O.212 36 O.15 25 O.063 14 Operator Checked Approved Sheet printed 14/01/2022 12:18 Operator													
0.425 49 0.3 44 0.212 36 0.15 25 0.063 14 Preparation and testing in accordance with BS1377 unless noted below Sheet printed 14/01/2022 12:18													
0.3 44 0.212 36 0.15 25 0.063 14 Sheet printed 14/01/2022 12:18			=		_					d testing in accordance with BC	1377 unless re	ted helow	
0.212 36 0.15 25 0.063 14 Operator Checked Approved Sheet printed 14/01/2022 12:18)		+			\dashv	i iopaialiuli dil	a coding in accordance with Bo	.orr unicss 110	ICG DOIOW	
0.15 25 0.063 14 Sheet printed 1 14/01/2022 12:18			2		1								
Operator Checked Approved Sheet printed 14/01/2022 12:18		0.15		25									
Operator Checked Approved 1 Dympos Darcy B Sc		0.063	3	14									
Dympos Darcy B Sc 14/01/2022 12:18		Operator		Checke	d	Approve	ed		\$	Sheet printed		1	
OC From No:R2		Dympna Darcy B.Sc.											

Γ	Da							Job Ref	202	21MO111
IRIC	DRILL	200	P#	RTIC	LE SIZE DIS	TRIBUTION		Borehole/Pit No.		TP-07
s	te Name		SSE Sheskin	Wind F	arm			Sample No.		1
S	oil Descriptior	า	Grey gravelly ve	ery silty f	ine SAND.			Depth, m		0.50
	pecimen eference				Specimen Depth		m	Sample Type		В
Т	est Method		BS1377:Part 2:	1990, cla	ause 9.2			KeyLAB ID	IDL12	2021110917
	CLAY	Fin	SILT le Medium	Coarse		SAND ledium Coarse	Fine	GRAVEL Coarse	COBBLES	BOULDERS
	100									
	90									
	80									
%	70									
assing	60									
Percentage Passing	50									
Percen	40									
	30									
	20									
	10									
	0.001		0.01		0.1	1 Particle Size	mm	10	100	1000
						r article Cize				
			ving		Sedimentation	on	Drv M	lass of sample, g		376
	Particle S mm	Size	% Passing		icle Size mm %	Passing				
							Sample Pr Very coarse		%	dry mass 0
	75		100				Gravel			12
	63		100				Sand			63
	50 37.5		100 100	-			Fines <0.06	63mm		25
	28		100	1			55 40.00			
	20		100				Grading A	nalysis		
Ī	14		100				D100 D60	mm	-	0.221
	6.3		98 95	+			D30	mm mm		0.221 0.0779
	5		93	1			D10	mm		
	3.35		91				Uniformity (Coefficient		
	2		88	_			Curvature (Coefficient		
	1.18 0.6		84 78	-			Remarks			
	0.425		74	1				d testing in accordance with BS	1377 unless not	ted below
	0.3		67							
	0.212		59	4						
	0.15 0.063		46 25	-						
			!	, 1	A			Sheet printed		<u> </u>
	Operator		Checked		Approved Dympna Darcy B	80		14/01/2022 12:18		1
					рупірпа рагсу В	.SU.				QC From No:R2

	l Da							Job Ref	202	21MO111
IRVe	DRILL	700	P/	ARTICI	LE SIZE DIS	TRIBUTION		Borehole/Pit No.		TP-08
s	ite Name		SSE Sheskin	Wind F	arm			Sample No.		1
	oil Descriptio	n	Grey very silty	SAND ar				Depth, m		0.50
	pecimen eference				Specimen Depth		m	Sample Type		В
Т	est Method		BS1377:Part 2	1990, cla	ause 9.2			KeyLAB ID	IDL12	2021110918
	CLAY	Fir	SILT ne Medium	Coarse		SAND ledium Coarse	Fine	GRAVEL Medium Coarse	COBBLES	BOULDERS
	100									
	90									
	70									
% guis	60									
Percentage Passing	50									
centaç	40									
Pei	30									
	20									
	10									
	0.001		0.01		0.1	1		10	100	1000
						Particle Size	mm			
			ving		Sedimentati	on	Dry M	lass of sample, g		549
	Particle s mm		% Passing	ll l	icle Size %	Passing			0/	dr. maaa
				╂			Sample Pr Very coarse		70	dry mass 0
	75		100				Gravel		<u> </u>	36
	63		100				Sand			39
	50 37.5		100 100				Fines <0.06	Samm		25
	28		100	+			1 1103 <0.00	Jonnin .	l	20
	20		92				Grading A	nalysis		
	14		86				D100	mm		
	10		79	<u> </u>			D60	mm		1.23
	6.3		74 72				D30 D10	mm		0.0904
	3.35		68	+			Uniformity (mm_ Coefficient		
	2		64	+			Curvature (
	1.18		60							
	0.6		55	╝			Remarks	dispettant to the	4077 :	to dib also
	0.425)	52 47				Preparation an	d testing in accordance with BS	13// unless not	rea below
	0.3	2	47 43	\dashv						
	0.212		37	\dashv						
	0.063		25	1						
	Operator		Checke	d	Approved		(Sheet printed		1
				1	Dympna Darcy B	S.Sc.	14,	14/01/2022 12:18 OC Fr		
										QC From No:R2

		Dry Density	/ Moisture Content Re	elationship	Job Ref	2021MO111		
			Heavy Compaction	·	Borehole / Pit No	TP-08		
Site Name			SSE Sheskin Wind Farm	Sample No	1			
Soil Description		Grey	very silty SAND and GRAVE	EL.	Depth	0.50 m		
Specimen Ref.		1	Specimen Depth	m	Sample Type	В		
Test Method		BS1377:Pa	art 4:1990, clause 3.6, 4.5kg	rammer	Keylab ID	IDL12021110918		
2.50				Compaction	5	% Air Voids % Air Voids % Air Voids		
2.20 Density, Mg/m3 2.10 2.00 1.90						•		
1.70	2	4	6 8 Moisture C	10 Content, %	12	14 16		
Preparation					erial used was natura			
Mould	d Туре				CBR			
Samp	les Used				Composite specimens tested			
		on 37.5 mm Siev			0			
	lal Retained	on 20.0 mm Siev	ve % Mg/m ³		8 2.70			
			Mg/m ⁻		2.23			
	Maximum Dry Density Mg/m³ Optimum Moisture Content %				3.9	<u></u> <u>_</u>		
	Checked	Approved	Remarks	•		QC Form R4		
Administrator DCI)	Administrator				Sheet 1 of 1		

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside CH5 3US

> Tel: (01244) 528700 Fax: (01244) 528701

email: haward encustomers ervices@alsglobal.com

Website: www.alsenvironmental.co.uk

Irish Drilling Limited Old Galway Road Loughrea Co. Galway

Attention: Dympna Darcy

CERTIFICATE OF ANALYSIS

Date of report Generation:07 December 2021Customer:Irish Drilling Limited

Sample Delivery Group (SDG): 211130-85
Your Reference: 2021MO111

Location: SSE Sheskin Wind Farm

 Report No:
 624806

 Order Number:
 10555

We received 2 samples on Tuesday November 30, 2021 and 2 of these samples were scheduled for analysis which was completed on Tuesday December 07, 2021. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

All sample data is provided by the customer. The reported results relate to the sample supplied, and on the basis that this data is correct.

Incorrect sampling dates and/or sample information will affect the validity of results.

The customer is not permitted to reproduce this report except in full without the approval of the laboratory.

Approved By:

Sonia McWhan

Operations Manager

ALS Life Sciences Limited. Registered Office: Units 7 & 8 Hawarden Business Park, Manor Road, Hawarden, Deeside, CH5 3US. Registered in England and Wales No. 4057291.

Version: 3.1 Version Issued: 07/12/2021

CERTIFICATE OF ANALYSIS

Report Number: 624806 Location: SSE Sheskin Wind Farm Superseded Report:

Validated

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
25431064	TP-04	В3	2.00 - 2.50	01/11/2021
25431071	TP-05	B2	1.50 - 1.90	02/11/2021

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

Superseded Report:

CERTIFICATE OF ANALYSIS

SDG: 211130-85 **Client Ref**.: 2021MO111 Report Number: 624806

Location: SSE Sheskin Wind Farm

Results Legend 25431064 25431071 Lab Sample No(s) X Test No Determination Possible Customer TP-04 TP-05 Sample Reference Sample Types -S - Soil/Solid UNS - Unspecified Solid GW - Ground Water ВЗ B2 **AGS Reference** SW - Surface Water LE - Land Leachate PL - Prepared Leachate PR - Process Water 2.00 - 2.50 1.50 - 1.90 SA - Saline Water Depth (m) TE - Trade Effluent TS - Treated Sewage US - Untreated Sewage RE - Recreational Water 250g Amber Jar (ALE210) 250g Amber Jar (ALE210) DW - Drinking Water Non-regulatory UNL - Unspecified Liquid SL - Sludge Container G - Gas OTH - Other Sample Type S Anions by Kone (soil) All NDPs: 0 Tests: 2 Х Х NDPs: 0 Tests: 2 Χ Sample description All NDPs: 0 Tests: 2 X X Total Sulphate All NDPs: 0 Tests: 2 X X

SDG: 211130-85 **Client Ref**.: 2021MO111

Report Number: 624806

Location: SSE Sheskin Wind Farm

Superseded Report:

Sample Descriptions

Grain Sizes

very fine	<0.063	Bmm	fine	0.063mm - 0.1mm	medium	0.1mm	n - 2mm	coarse	2mm - 10	0mm	very coarse	>10mm		
Lab Sample	No(s)	Customer	Sample Re	F. Depth (m)	Co	lour	Descript	tion	Inclusions	Inclu	sions 2			
2543106	64	TP-04		TP-04		2.00 - 2.50	Light	Brown	Loamy S	and	Stones	Vege	etation	
2543107	71	TP-05		1.50 - 1.90	Dark	Brown	Sandy Lo	oam	Stones	Vege	etation			

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Superseded Report:

CERTIFICATE OF ANALYSIS

SDG: 211130-85 **Client Ref**.: 2021MO111

Report Number: 624806

Location: SSE Sheskin Wind Farm

# ISO17025 accredited. and Aqueous / settled sample. and Aqueous / settled sample. but.unfilit Total / unfiltered sample. * Subcontracted - refer to subcontractor report for accreditation status. * Successive of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery (F) Trigger breach confirmed Lab Sample No.(s) AGS Reference BB B2 Component LOD/Units Method Moisture Content Ratio (% of as % PM024 11 13 13 13 13 15 15 190 150 190 ** ISO17025 accredited. ** June 1	- Burning							
as Aqueues / Settled sample. start.fill Dissolved Filter da sample. start.fill Dissolved Filter da sample. subcontricted - refer to subcontractor report for accreditation status. % recovery of the surrogate standard to check the efficiency of the neutrogate sta	Results Legend # ISO17025 accredited.		Customer Sample Ref.	TP-04	TP-05			
Subcontacted -refer to subcontractor report for accreditation status. Subcontractor report for accreditation status. Subcontractor report for accreditation status. Subcontractor report for accreditation status. Subcontractor report for accreditation status. Subcontractor report for accreditation status. Subcontractor report for accreditation status. Subcontractor of the method. The results of individual compounds within samples aren't corrected for the recovery (F) Trigger breach confirmed Lab Sample Mo.(s)	aq Aqueous / settled sample.							
Subcontracted - refer to subcontractor propri for accredition status. *Subcontracted - refer to subcontractor propri for accredition status. ***Subcontracted - refer to subcontractor propri for accredition status. ***Subcontracted - refer to subcontractor propri for accredition status. ***Subcontracted - refer to subcontractor propri for accredition status. ***Subcontracted - refer to subcontractor propri for accredition status. ***Subcontractor propri for subcontractor propri for accredition status. ***Subcontractor propri for subcontractor propri for accredition status. ***Subcontractor propri for subcontractor propri for accredition status. ***Subcontractor propriet accredition status. ***Subcontractor propriet accredition status. ***Subcontractor propriet accredition status. ***Subcontractor propriet accredition status. ***Subcontractor propriet accredition status. ***Subcontractor propriet accredition status. ***Subcontractor propriet accredition status. ***Subcontractor propriet accredition status. ***Subcontractor propriet accredition subcontractor propriet account propriet account propriet account propriet account propriet account propriet account propriet account propriet account propriet account propriet account propriet account propriet account propriet account prop	diss.filt Dissolved / filtered sample.							
Accorditation status. Comparison status. Comp	tot.unfilt Total / unfiltered sample. * Subcontracted - refer to subcontractor report for		Sample Type					
### #### #############################	accreditation status.			01/11/2021	02/11/2021			
Compounds within samples aren't corrected for the recovery Lab Sample No.(s) 25431064 25431071 25431	% recovery of the surrogate standard to check the efficiency of the method. The results of individual			30/11/2021	30/11/2021			
Component LoD/Units Method	compounds within samples aren't corrected for the	,						
AGS Reference B3 B2	recovery (F) Trigger breach confirmed							
Moisture Content Ratio (% of as received sample) PM024	1-4+§@ Sample deviation (see appendix)		AGS Reference					
received sample) pH	Component	LOD/Unit	s Method					
PH 1 pH Units TM133 8.58 6.32	Moisture Content Ratio (% of as	%	PM024	11	13			
Chloride (soluble) Chlorid	received sample)							
Chloride (soluble) Chlorid	pH	1 pH Unit	ts TM133	8.58	6.32	\neg		
Sulphate, Total <48 mg/kg	i e		.			м		
M M M M M M M M M M M	Culphoto Total	440 //-	TM004			į IVI		
Water Soluble Sulphate as SO4 2:1 < 0.004 g/l TM243 0.0199 0.014 Extract @ M @ M @ M Chloride (soluble) <5 mg/kg	Sulphate, Total	<48 mg/k	.g 1M221		/1.8			
Extract @ M @ M Chloride (soluble) <5 mg/kg						М		
Chloride (soluble) <5 mg/kg TM243 11.8 7.77		<0.004 g/	/I TM243	0.0199	0.014			
Chloride (soluble) <5 mg/kg TM243 11.8 7.77	Extract			@ M	@) M		
	Chloride (soluble)	<5 ma/ka	n TM243					
	` ´	Jg,g	9 0			M		
				W W	<u> </u>	IVI		
						_		
						_		
						\dashv		
			_			\dashv		
							_	
						T		
						\dashv		
						_		
						\neg		
						-		
						\neg		
						\rightarrow		
						_		
						\neg		
						-		
						_		
						\dashv		
			+			\dashv		
						\dashv		
			_			\dashv		
						_		
			1					Ι 7
						\dashv		
			_			\dashv		
						\neg		
			_			\dashv		
			_			\dashv		
						\neg		
			+			\dashv		

Validated

CERTIFICATE OF ANALYSIS

 SDG:
 211130-85
 Report Number:
 624806
 Superseded Report:

 Client Ref.:
 2021MO111
 Location:
 SSE Sheskin Wind Farm

Table of Results - Appendix

		• •
Method No	Reference	Description
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter
TM221	Inductively Coupled Plasma - Atomic Emission Spectroscopy. An Atlas of Spectral Information: Winge, Fassel, Peterson and Floyd	Determination of Acid Extractable Sulphate in Soils by ICP OES
TM243		Mixed Anions In Soils By Kone

NA = not applicable.

Chemical testing (unless subcontracted) performed at ALS Life Sciences Ltd Hawarden.

Validated

CERTIFICATE OF ANALYSIS

ALS

 SDG:
 211130-85
 Report Number:
 624806
 Superseded Report:

 Client Ref.:
 2021MO111
 Location:
 SSE Sheskin Wind Farm

Test Completion Dates

Lab Sample No(s)	25431064	25431071
Customer Sample Ref.	TP-04	TP-05
AGS Ref.	В3	B2
Depth	2.00 - 2.50	1.50 - 1.90
Туре	Soil/Solid (S)	Soil/Solid (S)
Anions by Kone (soil)	07-Dec-2021	07-Dec-2021
рН	02-Dec-2021	02-Dec-2021
Sample description	01-Dec-2021	01-Dec-2021
Total Sulphate	07-Dec-2021	07-Dec-2021

CERTIFICATE OF ANALYSIS

ALS

SDG: 211130-85 Location: SSE Sheskin Wind Farm Client Reference: Order Number: 2021MO111 10555

Report Number: Superseded Report: 624806

Appendix

General

- 1. Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.
- 2. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALS reserve the right to charge for samples received and stored but not analysed.
- 3. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 4. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 5. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 6. NDP No determination possible due to insufficient/unsuitable sample.
- 7. Results relate only to the items tested.
- 8. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
- 9. Surrogate recoveries Surrogates are added to your sample to monitor recovery of the test requested. A % recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
- 10. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 11. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 12. For dried and crushed preparations of soils volatile loss may occur e.g volatile mercury.
- 13. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
- 14. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 15. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
- 16. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 17 Data retention. All records, communications and reports pertaining to the analysis are archived for seven years from the date of issue of the final report.

18. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of >75% are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of <75% is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

19. Sample Deviations

If a sample is classed as deviated then the associated results may be compromised

1	Container with Headspace provided for volatiles analysis
2	Incorrect container received
3	Deviation from method
4	Matrix interference
•	Sample holding time exceeded in laboratory
@	Sample holding time exceeded due to late arrival of instructions or samples
§	Sampled on date not provided

20. Asbestos

When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALS (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining.

Asbe stos Type	Common Name		
Chrysof le	White Asbests		
Amosite	Brown Asbestos		
Cro a dolite	Blue Asbe stos		
Fibrous Act nolite	-		
Fib to us Anthop hyll ite	-		
Fibrous Tremolite	-		

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Respirable Fibres

Respirable fibres are defined as fibres of <3 μ m diameter, longer than 5 μ m and with aspect ratios of at least 3:1 that can be inhaled into the lower regions of the lung and are generally acknowledged to be most important predictor of hazard and risk for cancers of the lung.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 03 Trial Pit Photographs

Figure 1 H:\21MO102_Sheskin WF TP Photos\TP01 (1).JPG

Figure 2 H:\21MO102_Sheskin WF TP Photos\TP01 (2).JPG

Figure 3 H:\21MO102_Sheskin WF TP Photos\TP01 (3).JPG

Figure 4 H:\21MO102_Sheskin WF TP Photos\TP02 (1).JPG

Figure 5 H:\21MO102_Sheskin WF TP Photos\TP02 (2).JPG

Figure 6 H:\21MO102_Sheskin WF TP Photos\TP02 (3).JPG

Figure 7 H:\21MO102_Sheskin WF TP Photos\TP03 (1).JPG

Figure 8 H:\21MO102_Sheskin WF TP Photos\TP03 (2).JPG

Figure 9 H:\21MO102_Sheskin WF TP Photos\TP03 (3).JPG

Figure 10 H:\21MO102_Sheskin WF TP Photos\TP04 (1).JPG

Figure 11 H:\21MO102_Sheskin WF TP Photos\TP04 (2).JPG

Figure 12 H:\21MO102_Sheskin WF TP Photos\TP04 (3).JPG

Figure 13 H:\21MO102_Sheskin WF TP Photos\TP05 (1).JPG

Figure 14 H:\21MO102_Sheskin WF TP Photos\TP05 (2).JPG

Figure 15 H:\21MO102_Sheskin WF TP Photos\TP05 (3).JPG

Figure 16 H:\21MO102_Sheskin WF TP Photos\TP06 (1).JPG

Figure 17 H:\21MO102_Sheskin WF TP Photos\TP06 (2).JPG

Figure 18 H:\21MO102_Sheskin WF TP Photos\TP06 (3).JPG

Figure 19 H:\21MO102_Sheskin WF TP Photos\TP07 (1).JPG

Figure 20 H:\21MO102_Sheskin WF TP Photos\TP07 (2).JPG

Figure 21 H:\21MO102_Sheskin WF TP Photos\TP07 (3).JPG

Figure 22 H:\21MO102_Sheskin WF TP Photos\TP08 (1).JPG

Figure 23 H:\21MO102_Sheskin WF TP Photos\TP08 (2).JPG

Figure 24 H:\21MO102_Sheskin WF TP Photos\TP08 (3).JPG

Figure 26 H:\21MO102_Sheskin WF TP Photos\TP10 (2).JPG

Figure 27 H:\21MO102_Sheskin WF TP Photos\TP10 (3).JPG

Figure 28 H:\21MO102_Sheskin WF TP Photos\TP11 (1).JPG

Figure 29 H:\21MO102_Sheskin WF TP Photos\TP11 (2).JPG

Figure 30 H:\21MO102_Sheskin WF TP Photos\TP11 (3).JPG

Figure 31 H:\21MO102_Sheskin WF TP Photos\TP12 (1).JPG

Figure 32 H:\21MO102_Sheskin WF TP Photos\TP12 (2).JPG

Figure 33 H:\21MO102_Sheskin WF TP Photos\TP12 (3).JPG

Figure 34 H:\21MO102_Sheskin WF TP Photos\TP9 (1).JPG

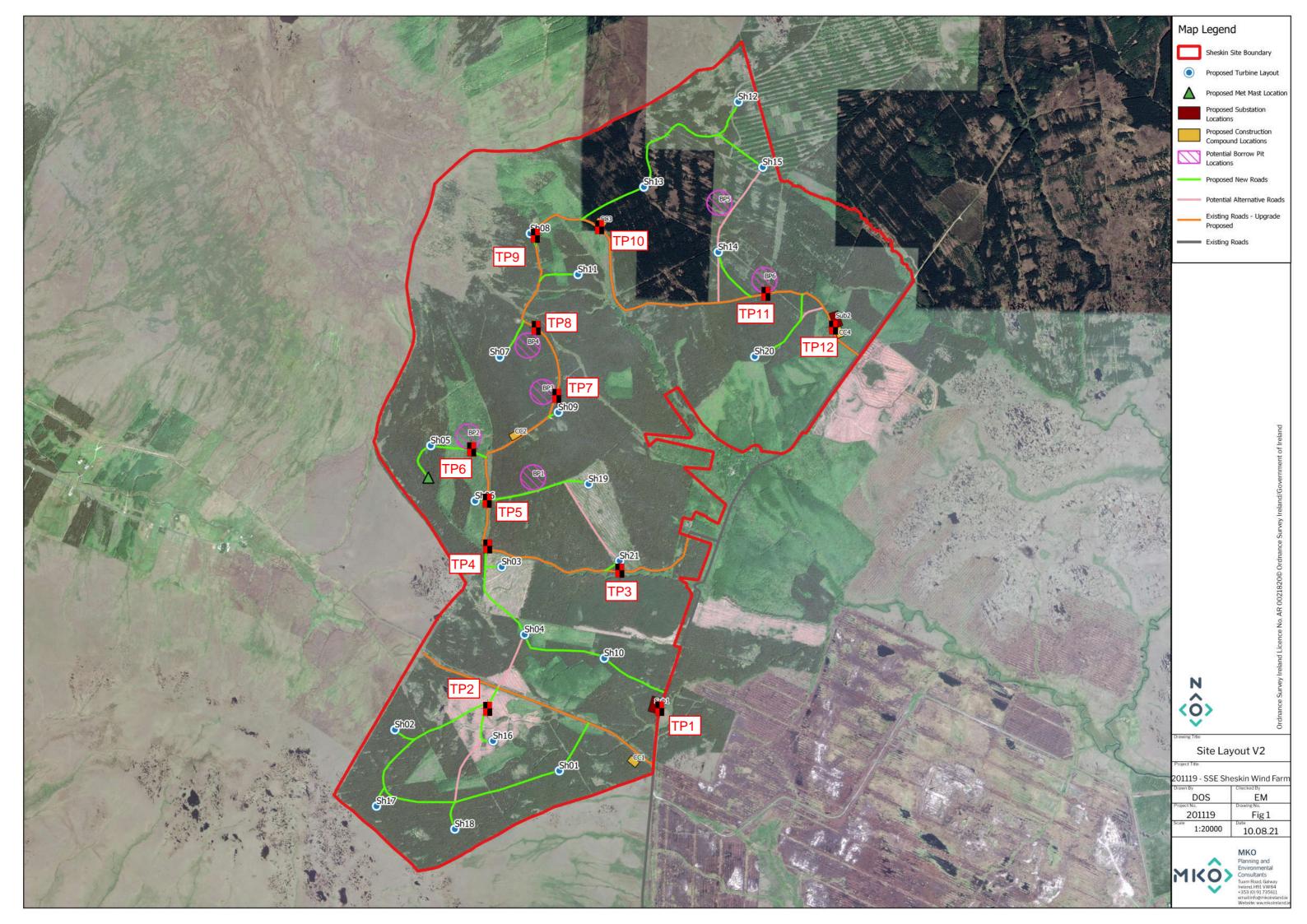

Figure 35 H:\21MO102_Sheskin WF TP Photos\TP9 (2).JPG

Figure 36 H:\21MO102_Sheskin WF TP Photos\TP9 (3).JPG

Appendix 04 Site Plan

Appendix 05 AGS Data

CONSULTANTS IN ENGINEERING, ENVIRONMENTAL SCIENCE & PLANNING

www.fehilytimoney.ie

Core House Pouladuff Road, Cork, T12 D773, Ireland +353 21 496 4133

Oublin Office

J5 Plaza, North Park Business Park, North Road, Dublin 11, D11 PXTO, Ireland

+353 1 658 3500

Carlow Office

Unit 6
Bagenalstown Industrial Park,
Bagenalstown, Co. Carlow,
R21 XW81, Ireland
+353 59 972 3800

